首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide chemical ligation chemistries, which allow the chemoselective coupling of unprotected peptide fragments, are useful tools for synthesizing native polypeptides or unnatural peptide‐based macromolecules. We show here that the phenylthiocarbonyl group can be easily introduced into peptides on α or ε amino groups using phenylthiochloroformate and standard solid‐phase method. It reacts chemoselectively with cysteinyl peptides to give an alkylthiocarbamate bond. S,N‐shift of the alkylaminocarbonyl group from the Cys side chain to the α‐amino group did not occur. The method was used for linking two peptide chains through their N‐termini, for the synthesis of a cyclic peptide or for the synthesis of di‐ or tetravalent multiple antigenic peptides (MAPs). Thiocarbamate ligation is thus complementary to thioether, thioester or disulfide ligation methods. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C‐terminal LPXTG recognition sequence and Gly5‐ on the peptidoglycan of bacterial cell walls [3]. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Solid‐state NMR‐based structure determination of membrane proteins and large protein complexes faces the challenge of limited spectral resolution when the proteins are uniformly 13C‐labeled. A strategy to meet this challenge is chemical ligation combined with site‐specific or segmental labeling. While chemical ligation has been adopted in NMR studies of water‐soluble proteins, it has not been demonstrated for membrane proteins. Here we show chemical ligation of the influenza M2 protein, which contains a transmembrane (TM) domain and two extra‐membrane domains. The cytoplasmic domain, which contains an amphipathic helix (AH) and a cytoplasmic tail, is important for regulating virus assembly, virus budding, and the proton channel activity. A recent study of uniformly 13C‐labeled full‐length M2 by spectral simulation suggested that the cytoplasmic tail is unstructured. To further test this hypothesis, we conducted native chemical ligation of the TM segment and part of the cytoplasmic domain. Solid‐phase peptide synthesis of the two segments allowed several residues to be labeled in each segment. The post‐AH cytoplasmic residues exhibit random‐coil chemical shifts, low bond order parameters, and a surface‐bound location, thus indicating that this domain is a dynamic random coil on the membrane surface. Interestingly, the protein spectra are similar between a model membrane and a virus‐mimetic membrane, indicating that the structure and dynamics of the post‐AH segment is insensitive to the lipid composition. This chemical ligation approach is generally applicable to medium‐sized membrane proteins to provide site‐specific structural constraints, which complement the information obtained from uniformly 13C, 15N‐labeled proteins.  相似文献   

4.
The type 1 repeat domain from thrombospondin has potent antiangiogenic activity and a structurally interesting fold, making it an attractive target for protein engineering. Chemical synthesis is an attractive approach for studying protein domains because it enables the use of unnatural amino acids for site‐specific labeling and detailed structure‐function analysis. Here, we demonstrate the first total chemical synthesis of the thrombospondin type 1 repeat domain by native chemical ligation. In addition to the natural domain, five sites for side chain modification were evaluated and two were found to be compatible with oxidative folding. Several challenges were encountered during peptide synthesis due to the functional complexity of the domain. These challenges were overcome by the use of new solid supports, scavengers, and the testing of multiple ligation sites. We also describe an unusual sequence‐specific protecting group migration observed during cleavage resulting in +90 Da and +194 Da adducts. Synthetic access to this domain enables the synthesis of a number of variants that can be used to further our understanding of the biochemical interaction network of thrombospondin and provide insight into the structure and function of this important antitumorogenic protein domain.  相似文献   

5.
Abstract Short oligonucleotide and peptide replicators have been described. To determine whether cross-replication could have occurred between such systems, we have attempted to show that peptides can specifically template the ligation of nucleic acids. A complex between a 35-mer anti-Rev RNA aptamer and a 17-mer arginine-rich motif (ARM) peptide from the HIV-1 Rev protein served as a model system. Aptamer half-molecules were activated for ligation via two activation chemistries, representing two distinct kinetic possibilities for early replicators. Cyanogen bromide activation was transient relative to oligonucleotides that terminated with a 5′-iodine and a 3′phosphorothioate, respectively. The Rev ARM specifically enhanced the degree or rate of ligation by both methods: there was a 10-fold increase in the production of full-length aptamer in the presence of cyanogen bromide and a 5.9- to 7.6-fold enhancement in the rate of ligation for stably activated aptamer half-molecules. These results support the possibility that life could have originated with peptide replicators and transitioned to nucleic acid replicators or that peptide and nucleic acid replicators could have been interdependent.  相似文献   

6.
Native chemical ligation of unprotected peptides in organic solvents has been previously reported as a fast, efficient, and suitable method for coupling of hydrophobic peptides. However, it has not been determined whether the reaction can be carried out without possible side reactions or racemization. Here, we present a study on the chemoselectivity of this method by model reactions designed to test the reactivity of Arg and Lys side chains as well as that of α‐amino groups. A possible racemization of the C‐terminal amino acid of the N‐terminal peptide was also investigated. The results show that ligation in organic solvents can be conducted chemoselectively without side reactions with other nucleophilic groups. Furthermore, no racemization of the C‐terminal amino acid was observed if both educts were added simultaneously. Thus, native chemical ligation can be performed either in aqueous buffer systems or in organic solvents paving the way for the synthesis of larger hydrophobic peptides and/or membrane proteins. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Oxime ligation is a powerful tool in various bioconjugation strategies. Nevertheless, high reaction rates and quantitative yields are typically reported for aldehyde‐derived compounds. In contrary, keto groups react much slower, with quantitative yields achieved at 5 h for low‐molecular weight compounds and more than 15 h for polymers or dendrimers. In this communication, we report that oxime ligation proceeds rapidly with quantitative (>95%) conversion within 1.5–2 h in pure acetic acid. The practical utility of suggested technique is illustrated by the synthesis of peptide‐steroid and peptide‐polymer conjugates of model aminooxy‐peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
C-terminal amidation is often a requisite structural feature for peptide hormone bio-activity. We report a chemical amidation method that converts peptide/protein thioesters into their corresponding C-terminal amides. The peptide/protein thioester is treated with 1-(2,4-dimethoxyphenyl)-2-mercaptoethyl auxiliary (1b) in a native chemical ligation (NCL) reaction to form an intermediate, which upon removal of the auxiliary with TFA, yields the peptide/protein amide. We have demonstrated the general utility of the approach by successfully converting several synthetic peptide thioesters to peptide amides with high conversion rates. Preliminary results of converting a recombinant peptide thioester to its amide form are also reported.  相似文献   

9.
蛋白质剪切是一种翻译后修饰事件 ,它将插入前体蛋白的中间的蛋白质肽段 (Intein ,internalproteinfrag ment)剪切出来 ,并用正常肽键将两侧蛋白质多肽链 (Extein ,flankingproteinfragments)连接起来。在此过程中不需要辅酶或辅助因子的作用 ,仅需四步分子内反应。Intein及其侧翼序列可以通过突变产生高度特异性的自我切割用于蛋白质纯化、蛋白质连接和蛋白质环化反应 ,在蛋白质工程方面有广泛的应用前景。  相似文献   

10.
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies—sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and “small fragment accumulation”—for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field. Zhe Chen and Jianbing Wu contributed to this work equally.  相似文献   

11.
T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3′‐terminus of the ligating strand using short ligation probes (9‐mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5′‐phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.  相似文献   

12.
Understanding the structure and function of protein complexes and multi‐domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon S ortase‐mediated and Na tive chemical ligation using synthetic Pe ptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps – sortase‐mediated and native chemical ligation – together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
James P. Tam  Qitao Yu 《Biopolymers》1998,46(5):319-327
In biological systems, both proteolysis and aminolysis of amide bonds produce activated intermediates through acyl transfer reactions either inter- or intramolecularly. Protein splicing is an illustrative example that proceeds through a series of catalyzed acyl transfer reactions and culminates at an O- or S-acyl intermediate. This intermediate leads to an uncatalyzed acyl migration to form an amide bond in the spliced product. A ligation method mimicking the uncatalyzed final steps in protein splicing has been developed utilizing the acyl transfer amide-bond feature for the blockwise coupling of unprotected, free peptide segments at methionine (Met). The latent thiol moiety of Met can be exploited using homocysteine at the α-amino terminal position of a free peptide for transthioesterification with another free peptide containing an α-thioester to give an S-acyl intermediate. A subsequent, proximity-driven S- to N-acyl migration of this acyl intermediate spontaneously rearranges to form a homocysteinyl amide bond. S-methylation with excess p-nitrobenezensulfonate yields Met at the ligation site. The methionine ligation is selective and orthogonal, and is usually completed within 4 h when performed at slightly basic pH and under strongly reductive conditions. No side reactions due to acylation were observed with any other α-amines of both peptide segments as seen in the synthesis of parathyroid hormone peptides. Furthermore, cyclic peptide can also be obtained through the same strategy by placing both homocysteine at the amino terminus and the thioester at the carboxyl terminus in an unprotected peptide precursor. These biomimetic ligation strategies hold promise for engineering novel peptides and proteins. © 1998 John Wiley & Sons, Inc. Biopoly 46: 319–327, 1998  相似文献   

14.
We present cognate base pair selectivity in template‐dependent ligation by T4 DNA ligase using a hydrophobic unnatural base pair (UBP), Ds‐Pa. T4 DNA ligase efficiently recognizes the Ds‐Pa pairing at the conjugation position, and Ds excludes the noncognate pairings with the natural bases. Our results indicate that the hydrophobic base pairing is allowed in enzymatic ligation with higher cognate base‐pair selectivity, relative to the hydrogen‐bond interactions between pairing bases. The efficient ligation using Ds‐Pa can be employed in recombinant DNA technology using genetic alphabet expansion, toward the creation of semi‐synthetic organisms containing UBPs.  相似文献   

15.
Tandem Peptide Ligation for Synthetic and Natural Biologicals   总被引:1,自引:0,他引:1  
J. P. Tam  Q. Yu  Y. -A. Lu 《Biologicals》2001,29(3-4):189-196
We describe the concept and methods of peptide ligation and tandem peptide ligation for preparing synthetic and natural biologicals. Peptide ligation is a segment coupling method for free peptides or proteins through an amide bond without the use of a coupling reagent or a protecting group scheme. Because unprotected peptides or proteins prepared from either a chemical or biochemical source are being used as building blocks, the ligation removes the size limitation for peptide and protein synthesis. A key feature of the peptide ligation is that the coupling reaction is orthogonal, i.e. it is specific to a particular alpha-amino terminus (NT). This NT-amino acid-specific feature permits the development of a tandem peptide ligation method employing three unprotected peptide segments containing different NT-amino acids to form consecutively two amide bonds, an Xaa-SPro (thiaproline) and then an Xaa-Cys. This strategy was tested in peptides ranging from 28 to 70 amino acid residues, including analogues of somatostatins and two CC-chemokines MIP-1alpha and MIP-1beta. The thiaproline replacements in these peptides and proteins did not result in altered biological activity. By eliminating the protecting group scheme and coupling reagents, tandem ligation of multiple free peptide segments in aqueous solutions enhances the scope of protein synthesis and may provide a useful approach for preparing protein biologicals and synthetic vaccines.  相似文献   

16.
TectoRNA, an artificial RNA with self‐assembling ability, has been employed as a structural platform for RNA nanotechnology and RNA synthetic biology. In this study, tectoRNA was applied as a specific template for chemical peptide ligation. On the basis of a self‐assembling tectoRNA, we designed and constructed a template RNA that facilitates peptide ligation depending on controlled dimer formation. Two RNA‐binding peptides were recognized by two peptide‐binding RNA motifs embedded in the template RNA, and chemical ligation was promoted because of the entropic effect of Mg2+‐dependent dimerization. In a series of biochemical analyses, we determined the relationship between the structures of the tectoRNA‐based templates and the extent of acceleration in peptide ligation. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The chemical synthesis of proteins has facilitated functional studies of proteins due to the site‐specific incorporation of post‐translational modifications, labels, and non‐proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time‐consuming synthesis of the required peptide thioesters. An Fmoc‐based peptide thioester synthesis with self‐purification on the sulfonamide ‘safety‐catch’ linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on‐resin cyclization–thiolysis reaction sequence. A macrocyclization via the N‐terminus of the full‐length peptide followed by a thiolytic C‐terminal ring opening allows selective detachment of the truncation products and the full‐length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization–thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3‐domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A Staphylococcus aureus transpeptidase, sortase A (SrtA), which catalyzes a peptide ligation with high substrate specificity, is a useful tool to site‐specifically attach proteinaceous/peptidic functional molecules to target proteins. However, its strong Ca2+ dependency makes SrtA difficult for use under low Ca2+ concentrations and in the presence of Ca2+‐binding substances. To overcome this problem, we designed a SrtA mutant that Ca2+‐independently demonstrates a high catalytic activity. The heptamutant (P94R/E105K/E108A/D160N/D165A/K190E/K196T), which resulted from a combination of known mutations at the Ca2+‐binding site and around the substrate‐binding site, successfully catalyzed a selective protein‐protein ligation in the cytoplasm of Escherichia coli. Selective protein modification in living cells is a promising approach for investigating cellular events and regulating cell functions. This SrtA mutant may prove to be a versatile tool for adding new functionalities to proteins of interest by incorporating functional proteins and chemically modified peptides in living cells, which usually retain low Ca2+ concentrations.  相似文献   

20.
Human glycodelin consists of 162 amino acid residues and two N‐linked glycans at Asn28 and Asn63. In this study, we synthesized it by a fully convergent strategy using native chemical ligation (NCL) in N to C direction. The four peptide segments corresponding to 1–31, 32–65, 66–105 and 106–162 sequences were synthesized by 9‐fluorenylmethoxycarbonyl based solid‐phase peptide synthesis. At the C‐terminus of the second segment, N‐ethyl‐S‐acetamidomethyl‐cysteine was attached as a post‐ligation thioesterification device. The N‐terminal two segments were condensed by the homocysteine‐mediated NCL at Leu‐Met site, and the product was methylated to convert homocysteine to methionine. After deprotection of acetamidomethyl group on the N‐ethylcysteine residue, the peptide was thioesterified by N‐alkylcysteine‐assisted method. The product was then ligated with the C‐terminal half, which was obtained by the NCL of third and fourth segments, to give the full‐length glycodelin. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号