首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactose is the key contact site for plant AB-toxins and the human adhesion/growth-regulatory galectins. Natural anomeric extensions and 3'-substitutions enhance its reactivity, thus prompting us to test the potential of respective chemical substitutions of galactose in the quest to develop potent inhibitors. Biochemical screening of a respective glycoside library with 60 substances in a solid-phase assay was followed by examining the compounds' activity to protect cells from lectin binding. By testing 32 anomeric extensions, 18 compounds with additional 3'-substitution, three lactosides and two Lewis-type trisaccharides rather mild effects compared to the common haptenic inhibitor lactose were detected in both assays. When using trivalent glycoclusters marked enhancements with 6- to 8-fold increases were revealed for the toxin and three of four tested galectins. Since the most potent compound and also 3'-substituted thiogalactosides reduced cell growth of a human tumor line at millimolar concentrations, biocompatible substitutions and scaffolds will be required for further developments. The synthesis of suitable glycoclusters, presenting headgroups which exploit differences in ligand selection in interlectin comparison to reduce cross-reactivity, and the documented strategic combination of initial biochemical screening with cell assays are considered instrumental to advance inhibitor design.  相似文献   

2.
New therapeutics strategy against cystic fibrosis seeks to prevent the adhesion of the bacterium Pseudomonas aeruginosa (PA) on the epithelial cells in the lungs. One of the factors that induces the adhesion is the interaction between natural glycocluster present on the cells and lectins such as the PA lectin LecA (PA‐IL) present on the bacterium. By introducing synthetic glycoclusters with a great affinity with the lectin PA‐IL, the adhesion can be prevented. In this study, we characterized, by atomic force microscopy, the interaction between a tetra‐galactosylated glycocluster and the PA‐IL lectin for high concentration of lectins (2.5 μM).We showed that the strong lectin/lectin interaction is reduced even for low concentration of glycoclusters (1 for 20 000 lectins). We assumed that it is due to the tensioactive behavior of the glycoclusters. It was shown that the arrangement of the created complexes induced different structures evolving from one‐dimensional elongated aggregates to two‐dimensional compact islands when increasing the glycocluster concentration. This evolution can be interpreted as the predominance of the glycocluster/lectin interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Multivalent glycoclusters have the potential to become pharmaceuticals by virtue of their target specificity toward clinically relevant sugar receptors. Their application can also provide fundamental insights into the impact of two spatial factors on binding, i.e., topologies of ligand (branching mode, cluster presentation) and carbohydrate recognition domains in lectins. Persubstituted macrocycles derived from nucleophilic substitution of iodide from heptakis 6-deoxy-6-iodo-beta-cyclodextrin by the unprotected sodium thiolate of 3-(3-thioacetyl propionamido)propyl glycosides (galactose, lactose and N-acetyllactosamine) were prepared. The produced glycoclusters were first tested as competitive inhibitors in solid-phase assays. A plant toxin from mistletoe and an immunoglobulin G fraction from human serum were markedly susceptible. A nearly 400-fold increase in inhibitory potency of each galactose moiety in the heptavalent form relative to free lactose (217-fold relative to free galactose) was detected. Thus, these glycoclusters can efficiently interfere, for example, with xenoantigen-dependent hyperacute rejection. Among the tested galectins selected from this family of adhesion- and growth-regulatory endogenous lectins, the substituted beta-cyclodextrins acted as sensors to delineate topological differences between the two dimeric prototype proteins. The relatively strong reactivity with chimera-type galectin-3, a mediator of tumor metastasis, disclosed selectivity for glycocluster binding among galectins. Equally important, the geometry of ligand display (maxiclusters, bi- or triantennary N-glycans) made its mark on the inhibitory potency. To further determine the sensitivity of a distinct galectin presented on the cell surface and not in solution, we established a stably transfected tumor cell clone. We detected a significant response to presence of the multivalent inhibitor. This type of chemical scaffold with favorable pharmacologic properties might thus be exploited for the design of galectin- and ligand-type-selective glycoclusters.  相似文献   

4.
Water soluble and lectin-recognizable carbohydrate-centered glycoclusters were prepared efficiently by the Huisgen 1,3-cycloaddition reaction of methyl-2,3,4,6-tetra-O-propargyl beta-D-galactopyranoside with 2-azidoethyl glycosides of lactose and N-acetyllactosamine. Their binding by a plant lectin RCA120 was examined by capillary affinity electrophoresis using fluorescence-labeled asialoglycans from human alpha1-acid glycoprotein. The glycoclusters showed 400-fold stronger inhibitory effect than free lactose, manifesting strong multivalency effect.  相似文献   

5.
Galectin‐3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin‐3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin‐3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin‐3 binds to N. meningitidis and we demonstrate that this interaction requiresfull‐length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin‐3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin‐3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin‐3 deficient (Gal‐3?/?) mice to evaluate the contribution of galectin‐3 to meningococcal bacteraemia. We found that Gal‐3?/? mice had significantly lower levels of bacteraemia compared with wild‐type mice after challenge with live bacteria, indicating that galectin‐3 confers an advantage to N. meningitidis during systemic infection.  相似文献   

6.
Li Y  Zhang X  Chu S  Yu K  Guan H 《Carbohydrate research》2004,339(4):873-879
The Ugi four-component reaction (U-4CR) was utilized to prepare divalent and trivalent cluster mannosides with different scaffolds. The glycoclusters obtained were tested for their relative inhibitory potency against the binding of yeast mannan to concanavalin A by solid-phase enzyme-linked lectin assays (ELLA) using methyl alpha-D-mannopyranoside as a standard. Among them, a divalent mannoside containing aromatic groups showed the strongest binding affinity to concanavalin A.  相似文献   

7.
The β‐galactoside binding protein galectin‐3 is highly expressed in a variety of epithelial cell lines. Polarized MDCK cells secrete this lectin predominantly into the apical medium by non‐classical secretion. Once within the apical extracellular milieu, galectin‐3 can re‐enter the cell followed by passage through endosomal organelles and modulate apical protein sorting. Here, we could show that galectin‐3 is internalized by non‐clathrin mediated endocytosis. Within endosomal organelles this pool associates with newly synthesized neurotrophin receptor in the biosynthetic pathway and assists in its membrane targeting. This recycling process is accompanied by transient interaction of galectin‐3 with detergent insoluble membrane microdomains in a lactose‐ and pH‐dependent manner. Moreover, in the presence of lactose, apical sorting of the neurotrophin receptor is affected following endosomal deacidification. Taken together, our results suggest that internalized galectin‐3 directs the subcellular targeting of apical glycoproteins by membrane recycling .  相似文献   

8.
During affinity chromatographic purification of bovine heart 14 kDa galactose-binding lectin (galectin 1) on lactose-Sepharose, several high molecular weight non-lectin glycoproteins were co-purified with the lectin. Glycoprotein binding to the affinity matrix was neither hydrophobic nor ionic, but galactose-dependent since lactose abolished binding. Purification of galectin from the co-purified glycoproteins by affinity electrophoresis in presence of the specific sugar lactose increased agglutination activity about 65-fold, indicating that a complex containing galectin molecules bound sugar specifically to endogenous glycoproteins with sugar binding sites still available had been retained on lactose-Sepharose.  相似文献   

9.
BackgroundGalectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route.MethodsProducts of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator.ResultsDirecting galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1.ConclusionsFolding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation.General significanceAvailability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.  相似文献   

10.
Fish beta-galactoside binding lectin (galectin) cDNA was cloned from the cDNA library of rainbow trout (Oncorhynchus mykiss) head kidney. The clone contained a single open reading frame encoding 341 amino acids (aa) (38 kDa protein), including the initiator methionine. Significant sequence homology to mammalian galectin-9 (40-55% identity) was observed. Its amino acid sequence showed two distinct N- and C-terminal domains (148 and 130 aa, respectively) connected by a peptide linker (63 aa). The galectin contains two consensus WG-E-R/K motifs thought to play an essential role in sugar-binding, indicating that this lectin is a member of the tandem-repeat type galectins which have not been identified in fish. The 1.6 kDa mRNA of the lectin was found by Northern blot analyses to be widely expressed in the spleen, head kidney, thymus, peritoneal exudate cells, ovary, gills and heart. Southern blot analyses with the probe for C-terminal of the lectin showed the existence of two hybridising genes. These results suggest that rainbow trout has at least one tandem-repeat type galectin as well as proto-type galectin.  相似文献   

11.
Galectin-3, a member of the galectin family of carbohydrate binding proteins, is widely expressed, particularly in cells involved in the immune response. Galectin-3 has also been indicated to play a role in various biological activities ranging from cell repression to cell activation and adhesion and has, thus, been recognized as an immunomodulator. Whereas those activities are likely to be associated with ligand cross-linking by this lectin, galectin-3, unlike other members of the galectin family, exists as a monomer. It has consequently been proposed that oligomerization of the N-terminal domains of galectin-3 molecules, after ligand binding by the C-terminal domain, is responsible for this cross-linking. The oligomerization status of galectin-3 could, thus, control the majority of its extracellular activities. However, little is known about the actual mode of action through which galectin-3 exerts its function. In this report we present data suggesting that oligomerization of galectin-3 molecules occurs on cell surfaces with physiological concentrations of the lectin. Using galectin-3 labeled at the C terminus with Alexa 488 or Alexa 555, the oligomerization between galectin-3 molecules on cell surfaces was detected using fluorescence resonance energy transfer. We observed this fluorescence resonance energy transfer signal in different biological settings representing the different modes of action of galectin-3 that we previously proposed; that is, ligand crosslinking leading to cell activation, cell-cell interaction/adhesion, and lattice formation. Furthermore, our data suggest that galectin-3 lattices are robust and could, thus, be involved, as previously proposed, in the restriction of receptor clustering.  相似文献   

12.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

13.
Chinese hamster ovary (CHO) cells cluster in the presence of pertussis toxin, a response that is correlated with the ADP-ribosylation of a Mr = 41,000 membrane protein by the toxin. A ricin-resistant line of CHO cells (CHO-15B) which specifically lacks the terminal NeuAc----Gal beta 4GlcNAc oligosaccharide sequence on glycoproteins did not cluster in response to pertussis toxin. These cells do contain the Mr = 41,000 protein substrate for the enzymatic activity of the toxin which suggests that pertussis toxin, like certain plant lectins, does not bind to or is not internalized by the CHO-15B cells. There was no evidence of pertussis toxin binding to gangliosides or neutral glycolipids isolated from CHO cells but the toxin bound to a Mr = 165,000 component in N-octyglucoside extracts of CHO cells that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotted to nitrocellulose. Plant lectins from Ricinus communis and Erythina cristagalli detected a similar size band in CHO cells and also did not react with CHO-15B cells. Unlike pertussis toxin, these plant lectins recognized two other major bands in CHO cell extracts and reacted best after sialidase treatment of nitrocellulose transfers containing CHO cell extracts. Conversely, sialidase treatment abolished binding a pertussis toxin and wheat germ agglutinin, a plant lectin that reacts with multivalent sialic acid residues on glycoproteins, to the Mr = 165,000 band. Purified B oligomer of pertussis toxin also uniquely detected a Mr = 165,000 component in CHO cell extracts while the A subunit of pertussis toxin was unreactive. These results indicate that pertussis toxin binds to a CHO cell glycoprotein with N-linked oligosaccharides and that sialic acid contributes to the complementary receptor site for the toxin. In addition, they suggest that a glycoprotein may serve as a cell surface receptor for pertussis toxin and that this interaction is mediated by a lectin-like binding site located on the B oligomer.  相似文献   

14.
The carbohydrate-binding site of galectin 1, a vertebrate β-galactoside-binding lectin, has a pronounced specificity for the βGal(1→3)- and βGal(1→4)GlcNAc sequences. The binding inhibition study reported herein was carried out to determine whether sulfation of saccharides would influence their binding by galectin 1. The presence of 6′-OSO3- on LacNAc greatly reduces the inhibitory potency relative to LacNAc. 3′-OSO3-LacNAc, 3′-OSO3-Galβ(1→3)GlcNAcβ1-OBzl and 3-OSO3-Galβ1-OMe are more potent inhibitors than the non-sulfated parent compounds. Surprisingly, 2′-OSO3-LacNAc showed over 40 fold less inhibitory potency relative to LacNAc. Ovarian carcinoma A121 cells were shown to synthesize sulfated macromolecules that bind to galectin 1. Modulation in vivo of saccharide sulfation may lead to modulation of galectin 1 interaction with glycoconjugates; hence, sulfation could play a role in modulating lectin functions.  相似文献   

15.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

16.
Synthetic cluster glycosides have often been used to unravel mechanisms of carbohydrate-protein interactions. Although synthetic cluster glycosides are constituted on scaffolds to achieve high avidities in lectin binding, there have been no known attempts to modulate the orientations of the sugar clusters with the aid of a functional scaffold onto which the sugar units are linked. Herein, we describe synthesis, physical, and lectin-binding studies of a series of alpha-D-mannopyranoside and beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside glycoclusters that are attached to a photoswitchable azobenzenoid core. These glycoclusters were synthesized by the amidation of amine-tethered glycopyranosides with azobenzene carbonyl chlorides. From kinetic studies, the cis forms of the azobenzene-glycopyranoside derivative were found to be more stable in aqueous solutions than in organic solvents. Molecular modeling studies were performed to estimate the relative geometries of the photoswitchable glycoclusters in the trans- and cis-isomeric forms. Isothermal titration calorimetry (ITC) was employed to assess the binding of these glycoclusters to lectins peanut agglutinin (PNA) and concanavalin A (Con A). Although binding affinities were enhanced several orders higher as the valency of the sugar was increased, a biphasic-binding profile in ITC plots was observed during few glycoclusters lectin-binding processes. The biphasic-binding profile indicates a "cooperativity" in the binding process. An important outcome of this study is that in addition to inherent clustering of the sugar units as a molecular feature, an induced clustering emanates because of the isomerization of the trans form of the azobenzene scaffold to the cis-isomeric form.  相似文献   

17.
We describe herein the construction of periodically, spatially controlled glycoclusters along DNA duplexes and their cooperative lectin recognition. Site-specifically alpha-mannosylated oligodeoxynucleotide 20-mer (Man-ODN20) was synthesized via the phosphoramidite solid-phase synthesis. Alternate hybridization of the Man-ODN20 with the half-sliding complementary ODN 20-mer (hscODN20) gave an alternately prolonged Man-cluster Man-ODN20/hscODN20. The binding of the Man-cluster to FITC-labeled ConA lectin showed sigmoidal fluorescence dependency on the concentration of Man-ODN, indicating that some mannose residues along the repeating DNA duplex were cooperatively bound to ConA (apparent affinity constant: K(af)=2.4 x 10(4)M(-1) and Hill coefficient: n=3.5). The duplex of Man-ODN20 with full complementary ODN 20-mer (fcODN20) was little bound to ConA. The binding behavior of Man-ODN20/hscODN20 is compared with that of the alternately prolonged Gal-cluster Gal-ODN20/hscODN20 previously reported. Duplexes 20-mer, 40-mer, and 60-mer presenting one, two, and three periodic galactoses were also prepared by full hybridization of 20-mer beta-galactosylated oligodeoxynucleotide (Gal-ODN20) with the periodically repeating full complementary 20-mer, 40-mer, and 60-mer ODNs. RCA(120) lectin was found to little bind the 20-mer and 40-mer duplexes and to bind weakly and non-cooperatively the 60-mer duplex (K(af)=1.1 x 10(4)M(-1)). The cooperative lectin recognition of these glycoclusters in relation with the degree of association (DA) of ODN and the numbers of glycosides along the DNA duplex is discussed.  相似文献   

18.
19.
Thymic negative selection and contraction of responding T cell oligoclones after infection represent important cell ablation processes required for maintaining T cell homeostasis. It has been proposed that galectin 1 contributes to these processes through interaction with lactosyl sequences principally on cell surface glycoproteins bearing core 2 (C2GnT1)-branched O-glycans. According to this model, specific T cell surface proteins cross-linked by galectin 1 induce signaling, ligand redistribution, and apoptosis in both immature thymocytes and activated T cells. The influence of lactosyl residues contained in branched O-glycans or complex N-glycans on galectin 1 binding and induction of annexin V ligand in murine CD8 T cells was assessed. Neither galectin binding nor galectin-induced expression of annexin V ligand was perturbed under conditions in which: 1) C2GnT1 activity was differentially induced by CD8 T cell activation/culture with IL-2 vs IL-4; 2) activated CD8(+) T cells lacked C2GnT1 expression; or 3) complex N-glycan formation was blocked by swainsonine. The maintenance of galectin 1 binding and induced annexin V expression under conditions that alter lactosamine abundance on O- or complex N-glycans suggest that galectin 1-mediated apoptosis is neither a simple function of fluctuating C2GnT1 activity nor a general C2GnT1-dependent mechanism underlying contraction of CD8 T cells subsequent to activation.  相似文献   

20.
The globiferous pedicellariae of the venomous sea urchin Toxopneustes pileolus contains several biologically active proteins. We have cloned the cDNA of one of the toxin components, SUL‐I, which is a rhamnose‐binding lectin (RBL) that acts as a mitogen through binding to carbohydrate chains on target cells. Recombinant SUL‐I (rSUL‐I) was produced in Escherichia coli cells, and its carbohydrate‐binding specificity was examined with the glycoconjugate microarray analysis, which suggested that potential target carbohydrate structures are galactose‐terminated N‐glycans. rSUL‐I exhibited mitogenic activity for murine splenocyte cells and toxicity against Vero cells. The three‐dimensional structure of the rSUL‐I/l ‐rhamnose complex was determined by X‐ray crystallographic analysis at a 1.8 Å resolution. The overall structure of rSUL‐I is composed of three distinctive domains with a folding structure similar to those of CSL3, a RBL from chum salmon (Oncorhynchus keta) eggs. The bound l ‐rhamnose molecules are mainly recognized by rSUL‐I through hydrogen bonds between its 2‐, 3‐, and 4‐hydroxy groups and Asp, Asn, and Glu residues in the binding sites, while Tyr and Ser residues participate in the recognition mechanism. It was also inferred that SUL‐I may form a dimer in solution based on the molecular size estimated via dynamic light scattering as well as possible contact regions in its crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号