首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (< 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (< 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.  相似文献   

3.
Objective: Different facts suggest that the insulin growth factor (IGF)/ insulin growth factor‐binding protein (IGFBP) system may be regulated by factors other than growth hormone. It has been proposed that, in healthy subjects, free IGF‐I plays a role in glucose metabolism. The role of free IGF‐I in glucose homeostasis in insulin resistance is poorly understood. This study was undertaken to evaluate the effects of acute changes in plasma glucose and insulin levels on free IGF‐I and IGFBP‐1 in obese and non‐obese subjects. Research Methods and Procedures: Nineteen lean and 24 obese subjects were investigated. A frequently sampled intravenous glucose tolerance test was performed. Free IGF‐I and IGFBP‐1 were determined at 0, 19, 22, 50, 100, and 180 minutes. Results: Basal free IGF‐I levels tended to be higher and IGFBP‐1 lower in obese than in lean subjects. IGFBP‐1 levels inversely correlated with basal insulin concentration. To determine the effects of insulin on the availability of free IGF‐I and IGFBP‐1, changes in their plasma concentrations were measured during a frequently sampled intravenous glucose tolerance test. After insulin administration, a significant suppression of free IGF‐I at 22% was observed in lean subjects. In contrast, plasma‐free IGF‐I levels remained essentially unchanged in the obese group. The differences between both groups were statistically significant at 100 minutes (p < 0.01) and 180 minutes (p < 0.05). Serum IGFBP‐1 was suppressed to a similar extent in both groups. Discussion: These data suggest that the concentrations of free IGF‐I and IGFBP‐1 are differentially regulated by obesity. Obesity‐related insulin resistance leads to unsuppressed free IGF‐I levels.  相似文献   

4.
Insulin‐like growth factor binding protein 4 (IGFBP‐4) was reported to trigger cellular senescence and reduce cell growth of bone marrow mesenchymal stem cells (BMSCs), but its contribution to neurogenic differentiation of BMSCs remains unknown. In the present study, BMSCs were isolated from the femur and tibia of young rats to investigate effects of IGFBP‐4 on BMSC proliferation and growth of neurospheres derived from BMSCs. Bone marrow mesenchymal stem cell proliferation was assessed using CCK‐8 after treatment with IGFBP‐4 or blockers of IGF‐IR and β‐catenin. Phosphorylation levels of Akt, Erk, and p38 in BMSCs were analysed by Western blotting. Bone marrow mesenchymal stem cells were induced into neural lineages in NeuroCult medium; the number and the size of BMSC‐derived neurospheres were counted after treatment with IGFBP‐4 or the blockers. It was shown that addition of IGFBP‐4 inhibited BMSC proliferation and immunodepletion of IGFBP‐4 increased the proliferation. The blockade of IGF‐IR with AG1024 increased BMSC proliferation and reversed IGFBP‐4‐induced proliferation inhibition; however, blocking of β‐catenin with FH535 did not. p‐Erk was significantly decreased in IGFBP‐4‐treated BMSCs. IGFBP‐4 promoted the growth of neurospheres derived from BMSCs, as manifested by the increases in the number and the size of the derived neurospheres. Both AG1024 and FH535 inhibited the formation of NeuroCult‐induced neurospheres, but FH535 significantly inhibited the growth of neurospheres in NeuroCult medium with EGF, bFGF, and IGFBP‐4. The data suggested that IGFBP‐4 inhibits BMSC proliferation through IGF‐IR pathway and promotes growth of BMSC‐derived neurospheres via stabilizing β‐catenin.  相似文献   

5.
Insulin‐like growth factor‐I (IGF‐I) is a low molecular weight peptide that mediates the cell proliferating actions of growth hormone. Evidence exists indicating that IGF‐I is produced by various cell types and this growth factor has been implicated in a variety of reproductive processes. To investigate the effect of IGF‐I over‐expression on reproductive systems, we generated three independent lines of transgenic mice harbouring a human IGF‐I cDNA (hIGF‐I) under the control of a Cytomegalovirus immediate early (CMV) promoter. The CMV promoter was used in an attempt to direct expression of IGF‐I into a variety of tissues both reproductive and non‐reproductive. Yet expression of the foreign hIGF‐I gene, determined by Northern blot, was found to occur only in the testicular tissues of the male mice, apparently due to methylation of the transgene in all the tissues tested except the testes, which demonstrate transgene hypomethylation. Evaluation of the transgene expression during testicular development revealed that expression begins between 10 and 15 days of development, coinciding with the appearance of the zygotene and pachytene primary spermatocytes during early spermatogenesis, therefore indicating germ line expression of the transgene. Extensive study of the CMV‐hIGF‐I transgenic lines of mice has revealed that the effects of the transgene expression do not extend beyond the testicular tissues. No significant differences (P > 0.05) in the IGF‐I serum levels, growth rates, or testicular histology have been observed between transgenic and non‐transgenic male siblings. The ability of transgenic males to produce offspring also appears unaffected. Evaluation of the IGF binding protein (IGFBP) levels in the testicular tissues of CMV‐hIGF‐I transgenic mice by Western ligand blot revealed an increase in the concentration of testicular proteins with molecular weights corresponding to IGFBP‐2 and IGFBP‐3. These results suggest that the testicular over‐expression of IGF‐I induces increased IGFBP localization in this tissue. Inhibition of IGF activity by the IGFBPs would explain the lack of a dramatic physiological effect in the CMV‐hIGF‐I transgenic mice, despite the presence of elevated testicular IGF‐I. The observation that testis specific IGF‐I overexpression induces localization of IGFBPs in this tissue confirms the existence of a well regulated testicular IGF system and supports the convention that this growth factor plays an important role in testicular function. Mol. Reprod. Dev. 54:32–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
We investigated the importance of the insulin‐like growth factor‐1 receptor (IGF‐1R) in hepatic metastases of uveal melanoma. The expression pattern of IGF‐1R in archival tissue samples of hepatic metastasis from 24 patients was analyzed by immunohistochemistry. All the samples of hepatic metastases stained positive for IGF‐1R. To investigate the biological role of IGF‐1R on the growth of metastatic uveal melanoma, a long‐term cell line obtained from a hepatic metastasis (TJU‐UM001) was evaluated. TJU‐UM001 expressed cell surface IGF‐1R (>90%) and proliferated in response to exogenous and endogenous insulin‐like growth factor‐1 (IGF‐1). Correlatively, anti‐IGF‐1R antibody completely blocked IGF‐1‐induced growth of TJU‐UM001 cells. IGF‐1 preferentially induced phosphorylation of Akt (S473) in quiescent TJU‐UM001 cells, and this was blocked by anti‐IGF‐1R antibody. This study suggests that autocrine and paracrine mechanisms underlie IGF‐1‐induced growth of metastatic uveal melanoma and underscore the potential benefit of IGF‐1 or IGF‐1R antagonism in treatment for metastatic uveal melanoma.  相似文献   

7.
Objective: It has been hypothesized that increased free insulin‐like growth factor (IGF)‐I levels generated from an increase in IGF‐binding protein (IGFBP) protease activity could be the inhibitory mechanism for the decreased growth hormone (GH) secretion observed in obese subjects. Research Methods and Procedures: In this study, we determined basal and 24‐hour levels of free IGF‐I and ‐II, total IGF‐I and ‐II, IGFBP‐1, as well as basal IGFBP‐2, ?3, and ?4, acid‐labile subunit (ALS), IGFBP‐1, ?2, and ?3 protease activity, and 24‐hour GH release in obese women before and after a diet‐induced weight loss. Sixteen obese women (age, 29.5 ± 1.4 years) participated in a weight loss program and 16 age‐matched non‐obese women served as controls. Results: Circulating free IGF‐I and 24‐hour GH release were significantly decreased in obese women at before weight loss compared with non‐obese women (1.29 ± 0.12 vs. 0.60 ± 0.09 μg/L; p < 0.001 and 862 ± 90 vs. 404 ± 77 mU/24 hours; p < 0.001, respectively). Free IGF‐I and 24‐hour GH release were not inversely correlated to each other. IGFBP‐1 and ?2 levels were decreased, whereas ALS, IGFBP‐3 and ?4, and IGFBP‐1, ?2, and ?3 protease activity were similar in obese and non‐obese women. Eight of the 16 obese women achieved an average weight loss of 30 ± 5 kg during 26 to 60 weeks of dieting. After the considerable weight loss, significant differences in free IGF‐I, GH release, and IGFBP‐1 and ?2 levels were no longer present between previously obese and non‐obese women. Discussion: We showed that circulating free IGF‐I is markedly decreased in severely obese women and does not per se mediate the concomitant hyposomatotropism. The decreased levels of free IGF‐I seem to be transient and restored to normal levels after weight loss.  相似文献   

8.
Insulin resistance (IR) is a common etiology of type 2 diabetes (T2D) defined by a state of decreased reactivity to insulin in multiple organs, such as the liver. This study aims to investigate how microRNA‐122‐5p (miR‐122) regulates the hepatic IR in vitro. We first found that the miR‐122 level was upregulated in the liver of rats fed with a high‐fat diet and injected with streptozotocin (T2D rats), while the expression level of insulin‐like growth factor 1 receptor (IGF‐1R), a potential target of miR‐122, was downregulated in the diabetic liver. In vitro, glucosamine‐induced IR was introduced in HepG2 hepatic cells, and the levels of miR‐122 and IGF‐1R were further assessed. An increase of miR‐122 level and a decrease of IGF‐IR level were observed in IR hepatic cells, which was the same as that in the diabetic liver. Results of the luciferase reporter assay validated IGF‐1R as a direct target of miR‐122. Moreover, in IR HepG2 cells, antagonizing miR‐122 with its specific inhibitor enhanced glucose uptake and suppressed the expression of glucose 6‐phosphatase and phosphoenolpyruvate carboxykinase, two key enzymes in regulating gluconeogenesis. Such alterations induced by the miR‐122 inhibitor in IR hepatic cells were impaired when IGF‐1R was simultaneously knocked down. In addition, the PI3K/Akt pathway was deactivated in IR cells, and then reactivated with miR‐122 inhibitor transfection. In conclusion, our study demonstrates that miR‐122 is able to regulate IR in hepatic cells by targeting IGF‐1R.  相似文献   

9.
Objective: Anatomically distinct adipose tissue regions differ in their predominant modality of growth (i.e., cellular hypertrophy vs. hyperplasia). We examined site‐specific patterns of expression of two genes whose products, leptin and insulin‐like growth factor‐I (IGF‐I), could be involved in mediating differential growth and metabolism of white adipose tissue. We also related these patterns of expression to measures of adipose depot cellularity. Research Methods and Procedures: Male Wistar rats were fed ad libitum and studied from ages 7 weeks to ~12 months. Terminal measures of body weights; weights, composition, and cellularity of four white adipose depots; circulating leptin and IGF‐I; and adipose depot‐specific expression levels of leptin and IGF‐I were measured in subsets of rats at 7, 12, 22, 42, and 46 weeks of age. Results: Both leptin and IGF‐I mRNAs are quantitatively expressed in a depot‐specific manner, in the following order: retroperitoneal ? epididymal > mesenteric > subcutaneous inguinal. Furthermore, there is a marked correlation between the expressions of these hormones in the various regions of adipose tissue of rats during the first year of life. The mechanisms that underlie the parallel expressions of leptin and IGF‐I appear to be related to fat‐cell volume. Discussion: Because both leptin and IGF‐I have been implicated in the regulation of energy homeostasis and are both expressed in adipose tissue, the depot‐specific linkage between the two genes suggests interaction at the autocrine level. This interaction may have an important role in determining functional properties particular to individual adipose depots.  相似文献   

10.
11.
Objective: Recent studies have suggested that a relationship between adiponectin and sex hormone, prolactin, and insulin‐like growth factor levels could be important for breast cancer risk and insulin sensitivity. Therefore, we assessed the relationship of adiponectin with plasma concentrations of estrone; estradiol; estrone sulfate; testosterone; androstenedione; dehydroepiandrosterone (DHEA); dehydroepiandrosterone sulfate (DHEAS); sex hormone binding globulin (SHBG); prolactin; insulin‐like growth factor (IGF‐1); its binding protein, IGF binding protein 3 (IGFBP‐3); c‐peptide; and IGF binding protein 1 (IGFBP‐1) among 360 postmenopausal women not taking postmenopausal hormones from the Nurses’ Health Study. Research Methods and Procedures: Multivariate models were adjusted for physical activity, alcohol consumption, age at blood draw, age at first birth/parity, fasting status, and time of day of blood draw; a separate model was additionally adjusted for BMI at blood draw. Results: Estrogens were inversely associated with adiponectin levels; however, except for free estradiol, these associations were substantially attenuated after adjustment for BMI. Free estradiol levels were 27% lower among women in the top vs. bottom quartile of adiponectin levels. No consistent associations were observed for the androgens, prolactin, IGF‐1, and IGFBP‐3. However, SHBG, c‐peptide, and IGFBP‐1 were strongly and independently associated with adiponectin levels (r = 0.29, ?0.30, 0.24, respectively). Conclusion: With the exceptions of SHBG, c‐peptide, and IGFBP‐1, the studied analytes were modestly associated with adiponectin and the associations were, in large part, mediated by body fat.  相似文献   

12.
Jaanis Lodjak  Marko Mägi 《Ibis》2018,160(3):688-692
To gain a selective advantage for survival in stochastic environments, the growth of different body parameters of juvenile animals should be constantly adjusted according to prevailing conditions. Hormones, especially insulin‐like growth factor 1 (IGF‐1), are an important part of physiological mechanisms mediating life‐history variability in free‐living animals when connecting available resources (e.g. food) with pathways of somatic growth. We used an IGF‐1 injection treatment in free‐living European Pied Flycatcher Ficedula hypoleuca nestlings to mimic experimentally the differentiation of growth conditions for chicks with a similar genetic background. We showed that there is probably a physiological trade‐off for young animals between the growth rates of structural size and body mass, where IGF‐1 could be part of the physiological modulatory system of this trade‐off. By weakening internal constraints that limit growth, IGF‐1 could help to relieve the trade‐off between these competing body size parameters.  相似文献   

13.
14.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

15.
Life‐history traits describe parameters associated with growth, size, survival, and reproduction. Life‐history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life‐history variation after controlling for body size involves trade‐offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life‐history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life‐history trade‐offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin‐like growth factor‐1 (IGF‐1) in shaping the adaptive integration of multiple life‐history traits. IGF‐1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF‐1 levels are susceptible to environmental variation and that IGF‐1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF‐1 concentrations and its associations with life‐history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF‐1 mediates adaptive divergence in suites of life‐history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF‐1 may facilitate adaptive plasticity in life‐history strategies in response to early environmental conditions and also how selection on loci controlling IGF‐1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF‐1 we suggest that IGF‐1 be considered a suitable candidate mechanism for mediating life‐history traits. Finally, we discuss what we can learn about IGF‐1 from studies in free‐ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF‐1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free‐ranging animals. Examining how IGF‐1 mediates life‐history traits in free‐ranging animals could lead to great insight into the mechanisms that influence life‐history variation.  相似文献   

16.
The uterus and the placenta synthesize insulin‐like growth factors (IGFs) and insulin‐like binding proteins (IGFBPs). These growth factors are implicated in processes of proliferation and differentiation that occur in the uterus. To determine the patterns of expression of IGFs during rat pregnancy we used in situ hybridization with digoxigenin labeled probes on uterus from day 7 to day 16 of pregnancy. In early gestation days (7–8) both IGF mRNAs showed similar tissue distribution with relative abundance in the stroma and circular muscle layer. On days 11 and 12 expression for IGF‐I mRNA was found in the mesometrial decidua and metrial gland and in the ectoplacental cone while clear expression of IGF‐II mRNA could only be found in the latter. On days 13 and 14, expression for IGF‐I mRNA could be detected in the mesometrial decidua and metrial gland but no expression was observed for IGF‐II mRNA. A gradient of IGF‐I mRNA expression could be observed in the placenta on day 16, with the trophoblastic cells of the basal zone expressing the signal with stronger intensity than in the labyrinthine zone. For IGF‐II mRNA the highest expression was associated with the labyrinthine zone. Endovascular trophoblast was positive for both mRNAs. The spatial and temporal patterns of expression suggests a role for IGFs in the process of decidualization as well as in the establishment, growth and differentiation of the various trophoblast cells of the placenta. Mol. Reprod. Dev. 53:294–305, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Insulin‐like growth factor (IGF)‐binding protein‐1 (IGFBP‐1), the main secretory protein of decidua that binds to IGFs and has been shown to inhibit or stimulate IGFs' bioactivities. Polymerization, one of the posttranslational modifications of IGFBP‐1, has been shown to lead to loss of inhibiting effect of IGFBP‐1 on IGF‐I actions. The current studies were undertaken to elucidate the effects of steroid hormones on IGFBP‐1 polymerization in trophoblast cell cultures. Placental tissues were obtained during legal, elective procedures of termination of pregnancy performed between 7 and 10 weeks of gestation, and primary trophoblast cells were separated. IGFBP‐1 polymerization was analyzed by SDS–PAGE and immunoblotting. IGFBP‐1 was polymerized when IGFBP‐1 was added to trophoblast cell cultures. Polymerization of IGFBP‐1 was inhibited by the addition of anti‐tissue transglutaminase antibody into the culture media. There was an increase in the intensity of polymerized IGFBP‐1 bands with the addition of medroxyprogesterone acetate (MPA), while no such difference was observed upon treatment with estradiol. MPA also increased the expression of tissue transglutaminase on trophoblast cell membranes. IGF‐I stimulated trophoblast cell migration, while IGFBP‐1 inhibited this IGF‐I‐induced trophoblast response. Addition of MPA attenuated the inhibitory effects of IGFBP‐1 on IGF‐I‐induced trophoblast cell migration. IGFBP‐1 was polymerized by tissue transglutaminase on the cell surface of trophoblasts, and MPA increased tissue transglutaminase expression on the cell surface and facilitated IGFBP‐1 polymerization. These results suggest that progesterone might facilitate polymerization of decidua‐secreted IGFBP‐1 and increase IGF‐I actions at feto‐maternal interface, thereby stimulating trophoblast invasion of maternal uterus. J. Cell. Physiol. 226: 434–439, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We have demonstrated previously in Hs578T cells that insulin‐like growth factor binding protein (IGFBP)‐3 can significantly accentuate ceramide (C2)‐induced apoptosis, but has no effect on cell death induced by integrin detachment [using an arginine‐glycine‐aspartic acid (RGD)‐containing peptide]. In contrast we found that IGFBP‐5 could inhibit apoptosis induced by either C2 or integrin detachment. It is now clear that the mitochondria not only provide the energy required for cell viability, but can also play an important role during the commitment phase to apoptosis. We used a mitochondrial respiratory chain inhibitor, antimycin A, at both apoptotic and nonapoptotic doses to further investigate the IGF‐independent actions of IGFBP‐3 and IGFBP‐5 on C2 and RGD‐induced apoptosis in the Hs578T cells. Hs578T cells had one of three treatments. 1: They were incubated with increasing doses of antimycin A for 24 h. 2: They were coincubated with an apoptotic dose of either C2 or RGD together with a nonapoptotic dose of antimycin A for 24 h. 3: They were incubated with a binding protein (100 ng/ml) for 24 h followed by coincubation of the binding protein with an apoptotic dose of antimycin A for a further 24 h. Cell viability was assessed by trypan blue dye exclusion and MTT assay, and apoptosis was confirmed and measured by morphologic assessment and flow cytometry. We found that antimycin A initiated apoptosis at 10 μmol/L and above. We also demonstrated that a nonapoptotic dose of antimycin A (0.1 μmol/L) significantly inhibited C2‐induced apoptosis, whereas it significantly accentuated RGD‐induced cell death. In addition, we found that cell death induced by antimycin A can be accentuated by IGFBP‐3 but is not affected by IGFBP‐5. These data indicate that IGFBP‐3 can directly enhance apoptosis triggered via the mitochondria; either directly by a mitochondrial inhibitor or by C2 (which we demonstrate to act via effects on the mitochondria in this model). IGFBP‐5, however, appears to confer survival effects via a distinct pathway not involving the mitochondria. J. Cell. Biochem. 80:248–258, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

19.
20.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号