首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereocontrolled synthesis of fully protected (2S,4S,6S)‐2‐amino‐6‐hydroxy‐4‐methyl‐8‐oxodecanoic acid was accomplished using a glutamate derivative as starting material. The key steps of this stereochemical synthetic pathway involved an Evans asymmetric alkylation, a Sharpless asymmetric epoxidation, and a Grignard reaction. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Accessible chiral syntheses of 3 types of (R)‐2‐sulfanylcarboxylic esters and acids were performed: (R)‐2‐sulfanylpropanoic (thiolactic) ester (53%, 98%ee) and acid (39%, 96%ee), (R)‐2‐sulfanylsucciinic diester (59%, 96%ee), and (R)‐2‐mandelic ester (78%, 90%ee) and acid (59%, 96%ee). The present practical and robust method involves (i) clean SN2 displacement of methanesulfonates of (S)‐2‐hydroxyesters by using commercially available AcSK with tris(2‐[2‐methoxyethoxy])ethylamine and (ii) sufficiently mild deacetylation. The optical purity was determined by the corresponding (2R,5R)‐trans‐thiazolidin‐4‐one and (2S,5R)‐cis‐thiazolidin‐4‐one derivatives based on accurate high‐performance liquid chromatography analysis with high‐resolution efficiency. Compared with the reported method utilizing AcSCs (generated from AcSH and CsCO3), the present method has several advantages, that is, the use of odorless AcCOSK reagent, reasonable reaction velocity, isolation procedure, and accurate, reliable optical purity determination. The use of accessible AcSK has advantages because of easy‐to‐handle odorless and hygroscopic solid that can be used in a bench‐top procedure. The Ti(OiPr)4 catalyst promoted smooth trans‐cyclo‐condensation to afford (2R,5R)‐trans‐thiazolidin‐4‐one formation of (R)‐2‐sulfanylcarboxylic esters with available N‐(benzylidene)methylamine under neutral conditions without any racemization, whereas (2S,5R)‐cis‐thiazollidin‐4‐ones were obtained via cis‐cyclo‐condensation and no catalysts. Direct high‐performance liquid chromatography analysis of methyl (R)‐mandelate was also performed; however, the resolution efficiency was inferior to that of the thaizolidin‐4‐one derivatizations.  相似文献   

4.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

7.
Xiong Liu  Yu Ma  Longqi Xu  Qi Liu 《Chirality》2019,31(9):750-758
(S,S)‐DIOP, a common catalyst used in asymmetric reaction, was adopted as chiral extractant to separate 3‐chloro‐phenylglycine enantiomers in liquid‐liquid extraction. The factors affecting extraction efficiency were studied, including metal precursors, organic solvents, extraction temperature, chiral extractant concentration, and pH of aqueous phase. (S,S)‐DIOP‐Pd exhibited good ability to recognize 3‐chloro‐phenylglycine enantiomers, and the operational enantioselectivity (α) is 1.836. The highest performance factor (pf) was obtained under the condition of extraction temperature of 9.1°C, (S,S)‐DIOP‐Pd concentration of 1.7 mmol/L, and pH of aqueous phase of 7.0. In addition, the possible recognition mechanism of (S,S)‐DIOP‐Pd towards 3‐chloro‐phenylglycine enantiomers was discussed.  相似文献   

8.
The optical resolution of (R,S)‐propranolol by the diastereomeric crystallization method was successfully performed using dehydroabietic acid (DHAA) as the resolving agent in methanol. The three important parameters: DHAA amount, solvent (methanol) amount, and crystallization temperature of diastereomeric salts were optimized employing the response surface methodology (RSM). When maintaining a lower limit of 95% for the purity of (S)‐propranolol, the optimal resolution conditions were a DHAA/(R,S)‐propranolol molar ratio of 1.1, solvent/(R,S)‐propranolol ratio of 16.2 mL.g‐1, and crystallization temperature of –5 °C. The desired (S)‐propranolol was prepared with 94.8% optical purity and 72.2% yield under the optimal conditions. Chirality 27:131–136, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Paclobutrazol, with two stereogenic centers, but gives only (2R, 3R) and (2S, 3S)‐enantiomers because of steric‐hindrance effects, is an important plant growth regulator in agriculture and horticulture. Enantioselective degradation of paclobutrazol was investigated in rat liver microsomes in vitro. The degradation kinetics and the enantiomer fraction were determined using a Lux Cellulose‐1 chiral column on a reverse‐phase liquid chromatography–tandem mass spectrometry system. The t1/2 of (2R, 3R)‐paclobutrazol is 18.60 min, while the t1/2 of (2S, 3S)‐paclobutrazol is 10.93 min. Such consequences clearly indicated that the degradation of paclobutrazol in rat liver microsomes was stereoselective and the degradation rate of (2S, 3S)‐paclobutrazol was much faster than (2R, 3R)‐paclobutrazol. In addition, significant differences between the two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (2S, 3S)‐paclobutrazol was more than 2‐fold of (2R, 3R)‐paclobutrazol and the Clint of (2S, 3S)‐paclobutrazol was higher than that of (2R, 3R)‐paclobutrazol after incubation in rat liver microsomes. These results may have potential implications for better environmental and ecological risk assessment for paclobutrazol. Chirality 27:344–348, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Introduction: This study determined the pharmacokinetics and pharmacodynamics of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine following a 5‐day moderate dose, as a continuous (R,S)‐ketamine infusion in complex regional pain syndrome (CRPS) patients. Materials and methods: Ketamine was titrated to 10–40 mg/h and maintained for 5 days. (R)‐ and (S)‐Ketamine and (R)‐ and (S)‐norketamine pharmacokinetic and pharmacodynamic studies were performed. Blood samples were obtained on Day 1 preinfusion, and at 60–90, 120–150, 180–210, and 240–300 min after the start of the infusion, on Days 2, 3, 4, 5, and on Day 5 at 60 min after the end of infusion. The plasma concentrations of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine were determined using enantioselective liquid chromatography–mass spectrometry. Results: Ketamine and norketamine levels stabilized 5 h after the start of the infusion. (R)‐Ketamine clearance was significantly lower resulting in higher steady‐state plasma concentrations than (S)‐ketamine. The first‐order elimination for (S)‐norketamine was significantly greater than that of (R)‐enantiomer. When comparing the pharmacokinetic parameters of the patients who responded to ketamine treatment with those who did not, no differences were observed in ketamine clearance and the first‐order elimination of norketamine. Conclusion: The results indicate that (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine plasma concentrations do not explain the antinociceptive activity of the drug in patients suffering from CRPS. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The use of quail meat and eggs has made this animal important in recent years, with its low cost and high yields. Glutathione S‐transferases (GST, E.C.2.5.1.18) are an important enzyme family, which play a critical role in detoxification system. In our study, GST was purified from quail liver tissue with 47.88‐fold purification and 12.33% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by SDS‐PAGE method and showed a single band. In addition, inhibition effects of (3aR,4S,7R,7aS)‐2‐(4‐((E)‐3‐(aryl)acryloyl)phenyl)‐3a,4,7,7a‐tetrahydro‐1H‐4,7methanoisoindole‐1,3(2H)‐dion derivatives ( 1a–g ) were investigated on the enzyme activity. The inhibition parameters (IC50 and Ki values) were calculated for these compounds. IC50 values of these derivatives ( 1a–e ) were found as 23.00, 15.75, 115.50, 10.00, and 28.75 μM, respectively. Ki values of these derivatives ( 1a–e ) were calculated in the range of 3.04 ± 0.50 to 131.50 ± 32.50 μM. However, for f and g compounds, the inhibition effects on the enzyme were not found.  相似文献   

12.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The first synthesis of an optically pure (2R,3R,4S)-hydantoin 2, analogue of (2S,3R,4S)-4-hydroxyisoleucine, was achieved in two steps in un-optimized 35% overall yield from previously reported aldehyde synthon 1. (2R,3R,4S)-Hydantoin is stable at acidic pH. This solves the major drawback of (2S,3R,4S)-4-hydroxyisoleucine that easily cyclizes into inactive lactone. Furthermore, (2R,3R,4S)-hydantoin stimulates the insulin secretion by 150% at 25 μM compared with 4-hydroxyisoleucine and insulin secretagogue drug repaglinide. In view of its stability and biological activity, (2R,3R,4S)-hydantoin represents a good candidate for type-2 diabetes management and control.  相似文献   

14.
The racemic and enantioselective synthesis of a novel glyceric acid derivative, namely, 2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid as well as the antioxidant activities is described. The virtually pure enantiomers, (+)‐(2R,3S)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid and (?)‐(2S,3R)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid were synthesized for the first time via Sharpless asymmetric dihydroxylation of trans‐caffeic acid derivatives using the enantiocomplementary catalysts, (DHQD)2‐PHAL and (DHQ)2‐PHAL. The determination of enantiomeric purity of the novel chiral glyceric acid derivatives was performed by high‐performance liquid chromatographic techniques on the stage of their alkylated precursors. The novel glyceric acid derivatives show strong antioxidant activity against hypochlorite and N,N‐diphenyl‐N‐picryl‐hydrazyl free radical. Their antioxidant activity is about 40‐fold higher than that of the corresponding natural polyether and three‐fold higher of trans‐caffeic acid itself. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The application of several immobilized lipases has been explored in the enantioselective esterification of (R,S)‐2‐methylbutyric acid, an insect pheromone precursor. With the use of Candida antarctica B, using hexane as solvent, (R)‐pentyl 2‐methylbutyrate was prepared in 2 h with c 40%, eep 90%, and E = 35, while Thermomyces lanuginosus leads to c 18%, eep 91%, and E = 26. The (S)‐enantiomer was obtained by the use of Candida rugosa or Rhizopus oryzae (2‐h reaction, c 34% and 35%, eep 75 and 49%, and E = 10 and 4, respectively). Under optimal conditions, the effect of the solvent, the molar ratio, and the nucleophile were evaluated.  相似文献   

16.
(2S,4R,5S)-2,4,6-Trimethyl-5-heptanolide (1), a sex pheromone component for Macrocentvus grandii, was synthesized by starting from methyl (R)-citronellate (2) and employing bromolactonization (10→11) as the key reaction.  相似文献   

17.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
P,C‐Stereogenic α‐amino phosphine oxides were prepared from the addition of (RP)‐menthyl phenyl phosphine oxide to chiral aldimines under neat condition at 80 °C in up to 91:9 drC and 99% yields. The diastereoselectivity was mainly induced by chiral phosphorus that showed matched or mismatched induction with (S)‐ or (R)‐aldimines, respectively. Chirality 28:132–135, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
A practical synthesis of (2S,4S)-4-hydroxyproline (1) based on DCC-induced inversion of the hydroxyl group of (2S,4R)-4-hydroxyproline (2) is described.  相似文献   

20.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号