首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over several decades, the distribution patterns and evolution of alpine disjunct species has become an increasingly discussed subject. Large scale genetic analysis has allowed the resolution of the past range changes and intraspecific evolution of many species, in Europe especially of Mediterranean origin. However, the phylogeographic structures of species with arctic-alpine disjunct distribution patterns are relatively poorly studied. The existing phylogeographic analysis (mostly of alpine plant species) supports disjunct distributions during glacial as well as post-glacial periods for a number of species. However, several questions still remain unresolved and we therefore analysed the Mountain Ringlet Erebia epiphron as a model for such alpine disjunct species. We found strong differentiation into five different lineages supporting five differentiation centres: (i) the eastern Pyrenees, (ii) the mountain ranges between the central Pyrenees and south-western Alps, (iii, iv) two areas along the southern Alps margin and (v) the northern Alps margin. We propose that these patterns evolved due to the humidity requirements of this species, which did not allow survival in the dry glacial steppes, but along the margins of the wetter glaciated high mountain ranges.  相似文献   

2.
Coriaria, which has the most conspicuously disjunct distribution of the flowering plants, is distributed in four separate areas of the world. The phylogenetic relationships of 12 Coriaria species collected from the representative disjunct areas were inferred by comparing 2416 bp of the combined data set of rbcL (a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase) and matK (maturase K) genes. The phylogenetic tree shows that the Chile-Papua New Guinea-New Zealand-Pacific islands species and the Central America-northern South America species form a sister group, and the Eurasian clade is more basal to them. The divergence time between the Eurasian group and the other species was estimated as 63 or 59 million years ago using rbcL and matK molecular clocks, respectively. These results do not support previously proposed hypotheses which explain the disjunct distribution on the basis of continental drift but suggest that the distribution pattern was formed by several geographical migrations and separations in the Cenozoic.  相似文献   

3.
Delphinine dolphins arose via a recent, rapid radiation, probably within the last four million years. Although molecular phylogenies are increasingly well resolved, patterns of morphology-ecology-geography are hard to link to phylogeny or to translate into taxonomy. Such problems might be tackled through understanding the drivers of the delphinine radiation. Here, we examine delphinine historical biogeography using the phylogeny of McGowen et al. (Mol Phylogenet Evol 53:891–906, 2009) as our working hypothesis. We used the Spatial Analysis of Vicariance” method to delimit modern distribution patterns, including disjunctions involving sister nodes in the Delphininae. The analysis identified disjunct sister nodes, allowing some interpretation of Delphininae biogeography. The Central American Seaway was probably an important gateway for early delphinids, but the succeeding “hard” barrier of the Panama Isthmus had little influence. Southern African waters form the Atlantic-Indo-Pacific gateway, which is sometimes considered a “soft” barrier because of the variation in the Benguela and Agulhas currents, in turn driven by tectonic changes and/or Pleistocene glacial and interglacial cycles. The latter cycles probably fragmented coastal habitats, allowing allopatric speciation. Geological patterns of turnover in Southern Ocean diatoms, which link to physical oceanic change, closely match the main cluster of delphinine divergences. The Eastern Pacific Barrier, and perhaps the associated Humboldt Current and equatorial “cold tongue,” affect modern distributions, but cause and effect are poorly understood. Future research should involve molecular-morphological phylogenetics for all species, subspecies, and ecomorphs. Complete distributions must be known for all taxa to understand how vicariance and dispersal shaped the distribution of delphinines.  相似文献   

4.
5.
Aim Cryptogenic species may include those taxa that were historically introduced and are now falsely viewed as native. Investigated here is the scale of cryptogenesis in the North Atlantic Ocean by examining disjunct distributions, defined as temperate species occurring only on both sides of the North Atlantic. Disjunct distributions can be explained by four scenarios: glacial relicts, taxonomic artefacts, natural trans‐oceanic dispersal and human‐mediated introduction. Location North Atlantic Ocean. Methods Model taxa included ascidians, bivalves and hydrozoans. Biogeographic status (native, introduced or cryptogenic) was assigned to all species exhibiting a disjunct distribution, based upon multiple criteria. Results Of 1030 species, 60 have a strictly disjunct distribution. Of these disjunct species, for five species there is no reason to doubt their native status, and 55 species are cryptogenic or introduced. Groups with high relative dispersal capacities do not have disjunct distributions more often. Infaunal bivalves have the lowest relative number of disjunct species; none are cryptogenic or naturally disjunct. This supports the concept that glaciations are unlikely to cause disjunct distributions: there are no studies that provide conclusive evidence for the glacial relict model. Hydrozoa have the highest relative number of disjunct species, which, while historically explained by undocumented rafting, may more likely be the result of dispersal by ships, which travel relatively fast, are independent of currents and provide greater surface area. Main conclusions This reanalysis of the historical biogeography of the North Atlantic marine biota reveals that far more species may have been introduced than previously recognized, potentially significantly altering our fundamental understanding of community evolution and ecology. Species that have been present for centuries and can be important ecological engineers who have shaped contemporary communities are possibly falsely viewed as native: they may in fact be the unrecognized introductions of historical times.  相似文献   

6.
Sixty-two species of insects in thirty-six families and nine orders, plus one species of Acari, were found to have disjunct distributions, or to belong to species groups with disjunct distributions, between the steppe areas in the central Monegros region (NE Spain) and the steppes in the eastern Mediterranean or central Asia. The accumulation of examples of a wide range of taxonomic groups, and the phyletic links of apparent endemic species of the central Ebro valley with eastern species, are considered to support the pre-Pleistocene origin of their relict distributions, associated with the persistence of steppe habitats over gypsiferous soils in the area since the Late Tertiary. The case of disjunct distributions of phytophages and their parasitoids on plants with disjunct distributions themselves, such as Krascheninnikovia ceratoides (L.) Gueldenst. (Chenopodiaceae) or the Juniperus thurifera L. − J. excelsa Bieb. complex (Cupressaceae), would seem to provide strong evidence supporting the continuity of their presence in the central Ebro valley through the Quaternary.  相似文献   

7.
Numerous taxa show ancient intertropical disjunct distributions. Many can be explained by well-known processes of historical vicariance, such as the breakup of Gondwanaland. Others, such as Asian–Neotropical divergences are not as well understood. To clarify the phylogenetic position and understand biogeographic and temporal origins of the geographically disjunct and morphologically unique genera of hinged-teeth snakes, Scaphiodontophis (n = 1) and Sibynophis (n = 9; Colubridae), we inferred a time-calibrated phylogeny with additional 107 taxa representing the superfamily Colubroidea using four genes (c-mos, cyt-b, ND2, RAG-1; 3085 bp). We used this tree to estimate ancestral areas for the group. The results show that Scaphiodontophis is sister to Sibynophis, both originated in the late Eocene/Oligocene in Asia and likely dispersed through Beringia to the New World, but unlike other snake groups left no extant species in temperate North America. Current recognition of Scaphiodontophiinae renders Colubrinae paraphyletic, and we resurrect the previously named subfamily Sibynophiinae to encompass both genera and use the tribes Sibynophiini (Sibynophis) and Scaphiodontophiini (Scaphiodontophis) to highlight the geographically distinct areas occupied by these taxa. These results suggest that intercontinental dispersal with extinction in intermediate areas can explain puzzling patterns of ancient intertropical disjunct distributions.  相似文献   

8.
Naive T lymphocytes exhibit extensive antigen-independent recirculation between blood and lymph nodes, where they may encounter dendritic cells carrying cognate antigen. We examine how long different T cells may spend in an individual lymph node by examining data from long term cannulation of blood and efferent lymphatics of a single lymph node in the sheep. We determine empirically the distribution of transit times of migrating T cells by applying the Least Absolute Shrinkage & Selection Operator () or regularised to fit experimental data describing the proportion of labelled infused cells in blood and efferent lymphatics over time. The optimal inferred solution reveals a distribution with high variance and strong skew. The mode transit time is typically between 10 and 20 hours, but a significant number of cells spend more than 70 hours before exiting. We complement the empirical machine learning based approach by modelling lymphocyte passage through the lymph node . On the basis of previous two photon analysis of lymphocyte movement, we optimised distributions which describe the transit times (first passage times) of discrete one dimensional and continuous (Brownian) three dimensional random walks with drift. The optimal fit is obtained when drift is small, i.e. the ratio of probabilities of migrating forward and backward within the node is close to one. These distributions are qualitatively similar to the inferred empirical distribution, with high variance and strong skew. In contrast, an optimised normal distribution of transit times (symmetrical around mean) fitted the data poorly. The results demonstrate that the rapid recirculation of lymphocytes observed at a macro level is compatible with predominantly randomised movement within lymph nodes, and significant probabilities of long transit times. We discuss how this pattern of migration may contribute to facilitating interactions between low frequency T cells and antigen presenting cells carrying cognate antigen.  相似文献   

9.
Leandra s.str. clade has around 200 species nearly restricted to eastern Brazil. Most species in this group are narrow endemics, but a few present striking disjunct distributions between eastern Brazil and Andes or Mesoamerica. Given the predominantly “montane” distribution observed in most Leandra s.str., we hypothesized that cyclical range expansions during colder Pleistocene periods, followed by local extinctions during warmer interglacial periods, could have shaped the distribution of the disjunct species in this clade. In order to gather support for this biogeographical scenario in a phylogenetic framework, the species that occur outside eastern Brazil were identified, ages of the dispersal events estimated, climatic niche models for the disjuncts were generated, and the climatic envelope of these species compared. Our results place all dispersal events from eastern Brazil to Andes or Mesoamerica during the Pleistocene. Climatic niche modeling indicates a potential range expansion during the Pleistocene colder times for the disjunct species. Although the surpassing of the “dry diagonal” could have been facilitated during glacial periods, this open corridor is an effective barrier for Leandra, given the reduced number of species that dispersed beyond an eastern Brazilian origin. Additionally, the disjunct species do not present significant differences in their climatic envelopes to the non‐disjunct species. Our results provide support to a short‐dispersion/stepping‐stone migration scenario to account for the observed disjunctions in this clade. Range expansions during Pleistocene colder periods followed by local extinctions during interglacial periods could have shaped the distribution of Leandra s.str.  相似文献   

10.
The distribution of the 36 palm species of New Caledonia is studied in relation to several parameters: elevation, rainfall, geological substrate, phytogeographical sectors and vegetation types. The climate (thermal gradient and rainfall) appears to be the principal factor influencing the distribution of palms, the substrate effect being subordinate to the climatic pattern. Nearly all palm populations are included within the 1,500 mm isoline. Maximum levels of species richness and endemism are located in four areas receiving more than 3,000 mm of annual rainfall. We interpret these areas as former Pleistocene refugia of lowland rain forest based on three lines of evidence: 1) all locally endemic lowland palm species and genera are restricted to these areas; 2) local endemics occur on east-facing slopes receiving the highest rainfall and most likely to have sustained rain forests during the driest periods; and 3) several pairs of sister species are disjunct between the southeastern and northeastern high rainfall areas.  相似文献   

11.
Roussea , a monotypic genus endemic to Mauritius, has for a long time been associated with Brexia (Celastraceae). Recently, it has been shown that Roussea is placed correctly in the mainly Australasian Asterales, but the sister group to Roussea has not been unequivocally identified. Cladistic analysis of the chloroplast genes ndhF and rbcL identifies the sister group to.Roussea as Carpodetaceae. Recognizing this relationship, the monotypic Rousseaceae is merged with Carpodetaceae into Rousseaceae s.l. comprising two subfamilies. This group is characterized by many-locular ovaries and similarities in the appearance of the petals. Rousseaceae s.l. exhibit a disjunct distribution in Mauritius, East Australia, New Zealand and New Guinea  相似文献   

12.
Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).—Zoologica Scripta, 39, 243–258. The diverse butterfly subtribe Euptychiina was thought to be restricted to the Americas. However, there is mounting evidence for the Oriental Palaeonympha opalina being part of Euptychiina and thus a disjunct distribution between it (in eastern Asia) and its sister taxon (in eastern North America). Such a disjunct distribution in both eastern Asia and eastern North America has never been reported for any butterfly taxon. We used 4447 bp of DNA sequences from one mitochondrial gene and four nuclear genes for 102 Euptychiina taxa to obtain a phylogenetic hypothesis of the subtribe, estimate dates of origin and diversification for major clades and perform a biogeographic analysis. Euptychiina originated 31 Ma in South America. Early Euptychiina dispersed from North to South America via the temporary connection known as GAARlandia during Eocene–Oligocene times. The current disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbound dispersal of a lineage from South America into eastern Asia via North America. The common ancestor of Palaeonympha and its sister taxon Megisto inhabited the continuous forest belt across North Asia and North America, which was connected by Beringia. The closure of this connection caused the split between Palaeonympha and Megisto around 13 Ma and the severe extinctions in western North America because of the climatic changes of the Late Miocene (from 13.5 Ma onwards) resulted in the classic ‘eastern Asia and eastern North America’ disjunct distribution.  相似文献   

13.
All networks are made up of vertices (points interconnected by segments), which include terminals interconnected by terminal segments, nodes interconnected by link segments and the root point connected to the tree by the root segment. All nodes may be classified into unique types according to the number of terminal and link segments they drain. For example, there are three distinct dichotomous nodes, a 'primary' node draining two terminal segments, a 'secondary' node draining one terminal segment and a link segment, and a 'tertiary' node draining two link segments. The numbers of primary and tertiary nodes approximate to equality in large networks and thus the ratio of primary to secondary nodes defines topology. All higher order nodes ( trichotomous and beyond) may be resolved into dichotomous forms and incorporated into the analysis. Different forms of growth may thus be analysed by comparing the frequency distributions of nodes with those generated by computer simulated growth models. Moreover, all vertices can be ordered so that metrical parameters are easily incorporated and the hierarchical arrangements of vertices of different order discerned. The dendritic trees of 48 Purkinje cells, taken from folia along the primary fissure, were analysed using vertex analysis. The mean number of segments in Purkinje cell trees was 881 +/- 23 (s.e.) and mean total dendritic length 7959 +/- 233 (s.e.) micrometers. Segment lengths were longest over proximal segments but over most of the tree segment lengths were constant at 10 +/- 0.2 (s.e.) micrometers. Vertex, segment and terminal frequency distributions of equivalent orders were all normal with a slight positive skew. Peak frequencies were recorded at the 12th equivalent order. The mean primary/secondary nodal vertex ratio was 0.93 and the proportion of trichotomous branch points in the tree was 5%. Comparison of the frequency distribution of all vertices with computer generated models showed that growth of the Purkinje cell was most closely simulated by a random terminal growth model, incorporating 5% trichotomy , in which the branching of high order terminals was more likely than low order terminals. It was concluded that growth of the Purkinje cell tree could proceed by random terminal branching with growth occurring preferentially over a front composed of terminals that are ascending through a corridor in the molecular layer whose margins are defined by neighbouring trees.  相似文献   

14.
Numerous planktonic species have disjunct distribution patterns in the world's oceans. However, it is unclear whether these are truly unconnected by gene flow, or whether they are composed of morphologically cryptic species. The marine planktonic chaetognath Sagitta setosa Müller has a discontinuous geographic distribution over the continental shelf in the northeastern Atlantic, Mediterranean Sea, and Black Sea. Morphological variation between these populations has been described, but overlaps and is therefore unsuitable to determine the degree of isolation between populations. To test whether disjunct populations are also genetically disjunct, we sequenced a 504-bp fragment of mitochondrial DNA comprising the cytochrome oxidase II region of 86 individuals. Sequences were highly variable; each represented a different haplotype. Within S. setosa, sequence divergence ranged from 0.2 to 8.1% and strong phylogeographic structure was found, with four main groups corresponding to the northeastern Atlantic, Mediterranean Sea (including Ligurian Sea, Tyrrhenian Sea and Gulf of Gabes), Adriatic Sea, and Black Sea. Two of these (Atlantic and Black Sea) were resolved as monophyletic clades, thus gene flow between disjunct populations of S. setosa has been extremely limited and lineage sorting has taken place. The deepest divergence was between Atlantic and Mediterranean/Black Sea populations followed by a split between Mediterranean and Black Sea populations. The Mediterranean/Black Sea clade comprised three groups, with the Adriatic Sea as the most likely sister clade of the Black Sea. These data are consistent with a colonization of the Black Sea from the Mediterranean. Furthermore, a possible cryptic species was found in the Black Sea with 23.1% sequence divergence from S. setosa. Two possibilities for the evolutionary origin of this species are proposed, namely, that it represents a relict species from the ancient Paratethys, or that it represents another chaetognath species that colonized the Black Sea more recently. Even though the exact timing of disjunction of S. setosa populations remains unclear, on the basis of the geological and paleoclimatic history of the European basins and our estimates of net nucleotide divergence, we suggest that disjunct populations arose through vicariance resulting from the cyclical changes in temperature and sea levels during the Pleistocene. We conclude that these populations have remained disjunct, not because of limited dispersal ability, but because of the inability to maintain viable populations in suboptimal, geographically intermediate areas.  相似文献   

15.
Species with fragmented distributions are particularly useful models for investigating processes underlying biological diversification in the Neotropics. The Phaeothlypis wood-warbler complex (Aves: Parulidae) is comprised of six disjunct or parapatric populations. The geographic distribution of these six populations mirrors the classic map of Neotropical areas of endemism that were originally proposed as putative Pleistocene forest refugia, but the magnitude of mitochondrial DNA divergence between these populations suggests that they are each substantially older, with origins in the late Pliocene. Phylogenetic reconstructions based on long mtDNA coding sequences show that the Guiana Shield and Atlantic Forest populations are sister lineages, and group this combined lineage and the remaining four population-specific lineages in a five-way hard polytomy. MtDNA-based phylogenetic reconstructions provide no evidence that the three populations with conspicuous yellow rump and tail feathers currently grouped as the Buff-rumped Warbler (P. fulvicauda) form a monophyletic group. Furthermore, there is a broad discordance between mtDNA and plumage along a transect just east of the Andes, where the contact zone between highly divergent mtDNA clades is more than 1000 km north of the phenotypic hybrid zone between the bright and dark plumage forms. This discordance between mtDNA genotype and plumage phenotype is similar to patterns seen on a finer geographic scale in other avian hybrid zones and may result from asymmetric introgression of the bright plumage trait.  相似文献   

16.
Networks can be described by the frequency distribution of the number of links associated with each node (the degree of the node). Of particular interest are the power law distributions, which give rise to the so-called scale-free networks, and the distributions of the form of the simplified canonical law (SCL) introduced by Mandelbrot, which give what we shall call the Mandelbrot networks. Many dynamical methods have been obtained for the construction of scale-free networks, but no dynamical construction of Mandelbrot networks has been demonstrated. Here we develop a systematic technique to obtain networks with any given distribution of the degrees of the nodes. This is done using a thermodynamic approach in which we maximise the entropy associated with degree distribution of the nodes of the network subject to certain constraints. These constraints can be chosen systematically to produce the desired network architecture. For large networks we therefore replace a dynamical approach to the stationary state by a thermodynamical viewpoint. We use the method to generate scale-free and Mandelbrot networks with arbitrarily chosen parameters. We emphasise that this approach opens the possibility of insights into a thermodynamics of networks by suggesting thermodynamic relations between macroscopic variables for networks.  相似文献   

17.
Studies of the origin and maintenance of disjunct distributions are of special interest in biogeography. Disjunct distributions can arise following extinction of intermediate populations of a formerly continuous range and later maintained by climatic specialization. We tested hypotheses about how the currently disjunct distribution of the Blossomcrown (Anthocephala floriceps), a hummingbird species endemic to Colombia, arose and how is it maintained. By combining molecular data and models of potential historical distributions we evaluated: (1) the timing of separation between the two populations of the species, (2) whether the disjunct distribution could have arisen as a result of fragmentation of a formerly widespread range due to climatic changes, and (3) if the disjunct distribution might be currently maintained by specialization of each population to different climatic conditions. We found that the two populations are reciprocally monophyletic for mitochondrial and nuclear loci, and that their divergence occurred ca. 1.4 million years before present (95% credibility interval 0.7–2.1 mybp). Distribution models based on environmental data show that climate has likely not been suitable for a fully continuous range over the past 130,000 years, but the potential distribution 6,000 ybp was considerably larger than at present. Tests of climatic divergence suggest that significant niche divergence between populations is a likely explanation for the maintenance of their disjunct ranges. However, based on climate the current range of A. floriceps could potentially be much larger than it currently is, suggesting other ecological or historical factors have influenced it. Our results showing that the distribution of A. floriceps has been discontinous for a long period of time and that populations exhibit different climatic niches have taxonomic and conservation implications.  相似文献   

18.
The sea lavender, Limonium wrightii , has six morphs of flower colour variation. The geographical distribution of flower colour morphs is disjunct; the distribution of the pink flower morph is divided into two subregions, and that of the yellow flower morph intervenes between them. The present study aimed to examine the origin of this apparent distribution pattern of flower colour in L. wrightii . Two main hypotheses (i.e. past dispersal events and phenotypic changes by natural selection and/or stochastic processes) have been proposed to account for the origin of leapfrog distribution patterns. To determine which hypothesis was applicable, we conducted a molecular phylogenetic analysis using sequence variation in chloroplast DNA (three regions of intergenic spacers, trnG - trnfM , trnV - trnM , and psbA-trnH ). We sequenced 58 accessions of L. wrightii frin 28 islands in the Ryukyu Archipelago and the Izu-Ogasawara Islands, located south of the Japanese mainland, and 12 accessions of four congeneric species. Within L. wrightii , we obtained four lineages of ten haplotypes. These lineages and haplotypes did not correlate with the different flower colours. These results indicate that the formation processes of populations are complex. The haplotypes of the pink flower morph did not show a sister relationship between the two disjunct subregions, indicating that the disjunct populations of the pink flower morphs are unlikely to share the pink flower colour as a result of common ancestry. We conclude that the observed leapfrog distribution pattern is caused by natural selection and/or stochastic processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 709–717.  相似文献   

19.
We propose a simple statistical approach for using Dispersal-Vicariance Analysis (DIVA) software to infer biogeographic histories without fully bifurcating trees. In this approach, ancestral ranges are first optimized for a sample of Bayesian trees. The probability P of an ancestral range r at a node is then calculated as P(rY) = ∑t^n=1 F(rY)t Pt where Y is a node, and F(rY) is the frequency of range r among all the optimal solutions resulting from DIVA optimization at node Y, t is one of n topologies optimized, and Pt is the probability of topology t. Node Y is a hypothesized ancestor shared by a specific crown lineage and the sister of that lineage "x", where x may vary due to phylogenetic uncertainty (polytomies and nodes with posterior probability 〈 100%). Using this method, the ancestral distribution at Y can be estimated to provide inference of the geographic origins of the specific crown group of interest. This approach takes into account phylogenetic uncertainty as well as uncertainty from DIVA optimization. It is an extension of the previously described method called Bayes-DIVA, which pairs Bayesian phylogenetic analysis with biogeographic analysis using DIVA. Further, we show that the probability P of an ancestral range at Y calculated using this method does not equate to pp*F(rY) on the Bayesian consensus tree when both variables are 〈 100%, where pp is the posterior probability and F(rY) is the frequency of range r for the node containing the specific crown group. We tested our DIVA-Bayes approach using Aesculus L., which has major lineages unresolved as a polytomy. We inferred the most probable geographic origins of the five traditional sections of Aesculus and ofAesculus californica Nutt. and examined range subdivisions at parental nodes of these lineages. Additionally, we used the DIVA-Bayes data from Aesculus to quantify the effects on biogeographic inference of including two wildcard fossil taxa in phylogenetic analysis. Our analysis resolved the geographic  相似文献   

20.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号