首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N–NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N–NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N–NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.
Graphical Abstract Binding energies and mechanical properties of HMX/NQ cocrystals in different molecular molar ratios were studied using molecular dynamics methods. The origin of the sensitivity change in the HMX/NQ cocrystal originates from formation of intermolecular interactions and the bond dissociation energy increment of the N–NO2 bond
  相似文献   

2.
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors.
Graphical abstract Bennett’s acceptance ratio (BAR) method
  相似文献   

3.
Bond critical points (BCPs) in the quantum theory of atoms in molecules (QTAIM) are shown to be a consequence of the molecular topology, symmetry, and the Poincaré-Hopf relationship, which defines the numbers of critical points of different types in a scalar field. BCPs can be induced by a polarizing field or by addition of a single non-bonded atom to a molecule. BCPs and their associated bond paths are therefore suggested not to be a suitable means of identifying chemical bonds, or even attractive intermolecular interactions.
Graphical abstract Bond-critical points in QTAIM and weak interactions?
  相似文献   

4.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

5.
β-Cyclodextrin (β-CD), which resides in the α-hemolysin (αHL) protein pore, can act as a molecular adapter in single-molecule exonuclease DNA sequencing approaches, where the different nucleotide binding behavior of β-CD is crucial for base discrimination. In the present contribution, the inclusion modes of β-CD towards four 2′-deoxyribonucleoside 5′-monophosphates (dNMPs) were investigated using quantum mechanics (QM) calculations. The calculated binding energy suggests that the binding affinity of dAMP to β-CD are highest among all the dNMPs in solution, in agreement with experimental results. Geometry analysis shows that β-CD in the dAMP complex undergoes a small conformational change, and weak interaction analysis indicates that there are small steric repulsion regions in β-CD. These results suggest that β-CD has lower geometric deformation energy in complexation with dAMP. Furthermore, topological analysis and weak interaction analysis suggest that the number and strength of intermolecular hydrogen bonds and van der Waals interactions are critical to dAMP binding, and they both make favorable contributions to the lower interaction energy. This work reveals the reason why β-CD prefers to bind dAMP rather than other dNMPs, while opening exciting perspectives for the design of novel β-CD-based molecular adapters in the single-molecule exonuclease method of sequencing DNA.
Graphical Abstract The binding affinity of β-cyclodextrin towards four 2′-deoxyribonucleoside 5′-monophosphates was investigated using quantum mechanics calculations
  相似文献   

6.
The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.
Graphical Abstract Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine
  相似文献   

7.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

8.
9.
The reaction between the antibiotic cefotaxime and the CTX-M-14 class A serine hydrolase is addressed from a theoretical point of view, by means of hybrid quantum mechanics/molecular mechanical (QM/MM) calculations, adopting a new approach that postulates that the residue Ser70 itself should play the role of the acid-base species required for the cefotaxime acylation. The proposed mechanism differs from earlier proposals existing in literature for other class A β-lactamases. The results confirm the hypothesis, and show that the reaction should occur via a concerted mechanism in which the acylation of the lactam carbonyl carbon, protonation of the N7 lactam atom, and opening of the β-lactam ring occurs simultaneously. Exploration of the potential energy surface shows three critical points, associated with reactants, transition state and product. The transition state is characterized by frequency, intrinsic reaction coordinate, atomic charge, and bond orders calculations. The calculated activation barrier is 20 kcal mol?1, and the reaction appears to be slightly endothermic by about 12 kcal mol?1. We conclude that this approach is feasible, and should be considered as an alternative mechanism or may exist in competition with others already published in the literature. This information should be useful for the design of novel antibiotics and β-lactamase inhibitors.
Graphical abstract Three-dimensional view of the potential energy surface of cefotaxime
  相似文献   

10.
Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions.
Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol]
  相似文献   

11.
The interaction of six low-molecular tissue-clearing agents (1,2 and 1,3-propanediol, ethylene glycol, glycerol, xylitol, sorbitol) with the collagen mimetic peptide (GPH)3 was studied by applying the methods of classical molecular dynamics (GROMACS), molecular docking (AutoDock Vina) and quantum chemistry (PM6 and B3LYP). The spatial configurations of intermolecular complexes were determined and interaction energies calculated. The dependence of the volume occupied by the collagen peptide on the clearing agent concentration in an aqueous solution was calculated. This dependence is not linear, and has a maximum for almost all the agents in the study. The correlations between the optical clearing potential and intermolecular interactions parameters, such as the time of an agent being in a hydrogen-bonded state, and the relative probability of formation of double hydrogen bonds and interaction energies, were determined. Using the correlations determined, we predicted the numeric value of the optical clearing potential of dextrose molecules in rat skin, which correlates with experimental data. A molecular mechanism of tissue optical clearing within the post-diffusion stage is suggested.
Graphical abstract The molecular modeling of the interaction between clearing agents and collagen
  相似文献   

12.
A theoretical 1H NMR spectroscopy and thermodynamic analysis of the host–guest inclusion process involving the norfloxacin (NFX) into β-cyclodextrin (β-CD) was carried out. DFT structure and stabilization energies were obtained in both gas and aqueous phases. We could establish that the complex formation is enthalpy driven, and the hydrogen bonds established between NFX and β-CD play a major role in the complex stabilization. Besides, a theoretical 1H NMR analysis has shown to be a supplementary proceeding to predict appropriately the inclusion mode of norfloxacin molecule into the β-CD. In this work, a theoretical study of the NFX@β-CD complex is reported for the first time, seeking a deep understanding of topology and thermodynamics of the inclusion complex formation.
Graphical Abstract Topology, thermodynamic and 1H NMR analysis of NFX@β-CD host-guest complexes
  相似文献   

13.
The structure and stability of various ternary complexes in which an extended aromatic system such as coronene interacts with ions/atoms/molecules on opposite faces of the π-electron cloud were investigated using ab initio calculations. By characterizing the nature of the intermolecular interactions using an energy decomposition analysis, it was shown that there is an interplay between various types of interactions and that there are co-operativity effects, particularly when different types of interactions coexist in the same system.
Graphical abstract Weak OH-π, π-π and van der Waals-π ternary systems are stabilized through dispersion interactions. Cation-π ternary systems are stabilized by through-space electrostatic interactions.
  相似文献   

14.
A new compound based on the D-π-A concept, where D = dimethylamino-phenyl and A = naphthoic acid, separated by an imine motif, was designed, synthesized and characterized. The spectral, energetics, and structural characteristics of the compound were studied thoroughly theoretically by density functional theory (DFT) in the gas and aqueous phases and experimentally (steady-state absorption) in aqueous media with various degrees of polarity and hydrogen bonding ability. This compound shows high sensitivity to the polarity, basicity and proton affinity of the environment. Based on DFT, TD-DFT and NBO analysis, the compound exists in the ground-state with both intermolecular and intramolecular hydrogen bond conformations in association with the –COOH, with latter isomer calculated to be more stable. Furthermore, structural changes via intermolecular solute–solvent interactions, dictate electronic modifications and spectral changes.
Graphical abstract Acidic and basic sites in DMAMN involved in protonation/deprotonation
  相似文献   

15.
The ternary complexes ML???PyZX2???NH3 (ML?=?CuCl, CuCN, AgCN, and AuCN; Z?=?P, As, and Sb; X?=?H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML???PySbH2???NH3, ML???PyAsF2???NH3, and ML???PySbF2???NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.
Graphical Abstract The pnicogen bond is strengthened by the coordinaiton bond
  相似文献   

16.
The electric dipole transitions between pure spin and mixed spin electronic states are calculated at the XMC-QDPT2 and MCSCF levels of theory, respectively, for different intermolecular distances of the C6H6 and O2 collisional complex. The magnetic dipole transition moment between the mixed-spin ground (“triplet”) and the first excited (“singlet”) states is calculated by quadratic response at MCSCF level of theory. The obtained results confirm the theory of intensity borrowing and increasing the intensity of electronic transitions in the C6H6?+?O2 collision. The calculation of magnetically induced current density is performed for benzene molecule being in contact with O2 at the distances from 3.5 to 4.5 Å. The calculation shows that the aromaticity of benzene is rising due to the conjugation of π-MOs of both molecules. The C6H6?+?O2 complex becomes nonaromatic at the short distances (r?<?3.5 Å). The computation of static polarizability in the excited electronic states of the C6H6?+?O2 collisional complex at various distances supports the theory of red solvatochromic shift of the a?→?X band.
Graphical abstract The C6H6+ O2 collisional complex
  相似文献   

17.
A perfectly planar Al13+ cluster (CI) and a quasi-planar Al13+ cluster (CII) have been found for the first time. Both clusters have a triangular core surrounded by a set of ten Al atoms in the form of a ring. These cationic clusters have substantial aromatic character. The planar CI cluster has local antiaromatic patches within global aromatic sea. It is doubly aromatic having both σ and π aromatic character. The quasi-planar CII cluster is also aromatic but it has more σ-delocalization.
Graphical abstract Planar and quasi-planar Al13+ clusters with triangular core surrounded by a ring of ten atoms.
  相似文献   

18.
High-level ab initio calculations on the complexes between noble gas atoms (He, Ne, Ar, Kr, and Xe) and dihalogen molecules (F2, Cl2, Br2, and I2) reveal trends, both in interaction energies and the energy difference between the linear and T-shaped structures, that can be explained well in terms of dispersion interactions enhanced by polar flattening of the halogens. The partial discrepancies with experimental findings are discussed.
Graphical abstract The molecular electrostatic potential (red positive, blue negative) of Cl2...Br2 projected onto the 0.003 a.u. isodensity surface.
  相似文献   

19.
20.
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C4mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C4mim]TFA is a better extractant for thiophene sulfone (THO2) than for TH. Two pathways were proposed for the oxidation of TH to THO2 with [C4mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C4mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H2O2 as an oxidant.
Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFA?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号