共查询到20条相似文献,搜索用时 15 毫秒
1.
Many hypotheses have been proposed to explain the origin and maintenance of the Amazonian diversity with special place for the theory of isolation by rivers and a set of hypothesis related to contemporary environmental dissimilarity. We explore those hypotheses here using the biogeographic distributional patterns of dragonflies in interfluve areas of the Amazonian biome and also evaluate how differences among in dispersal capabilities between the Anisoptera and Zygoptera suborders may contribute to those patterns. We used distributional information of 392 odonate species in the Amazonian forest in a cladistic analysis of distributions and endemism and the estimated faunistic similarity among interfluves with the Sorensen index. The environmental similarity among interfluves was analysed by discriminant analysis based on eight environmental metrics. Different metrics for geographic distance (connectivity) among interfluves were evaluated and their relation to the other variables tested by the Mantel test. The number of endemic species was linearly correlated to the area of the interfluves. General endemism patterns showed consistent resemblance to those reported for vertebrates, especially the similarity among the Rond?nia and Inambari interfluves. Geographical distance has no predictive value for dragonflies distribution, but the environmental similarity is a good predictor of proportion of shared species. The low dispersal group (Zygoptera) presented more clear patterns of distribution and a lower proportion of shared species among different interfluves. The environmental similarity can be considered the determinant factor of the distribution of dragonflies, possibly due to environmental specificity evolved during a long history of some clades in this system. The low dispersal group (Zygoptera) retained more biogeographical information about possible historical factors that determine current distribution. Also, the transport of larvae by macrophyte banks, the lateral change of river courses, the reversal of the drainage basin, together with the capacity to disperse across rivers for some species may be explanations for the lack of effect of isolation by rivers, especially for Anisoptera. 相似文献
2.
James L. Luteyn 《The Botanical review》2002,68(1):55-87
In the Neotropics, the Ericaceae are an Andean-centered family, adapted to moist, open, cool montane environments. Overall
species richness increases nearer the Equator, with the highest species numbers concentrated in Colombia and Ecuador between
1000 m and 3000 m. There are 46 genera (70% endemic) and about 800 species (ca. 94% endemic) of Ericaceae native to the Neotropics.
Five biogeographical regions are recognized for the neotropical Ericaceae, with the greatest species diversity found in the
Andes of northwestern South America. Following Pliocene/Pleistocene mountain-building and climatic events, neotropical Ericaceae
underwent dynamic speciation and extensive adaptive radiation due to their ecological and life-form plasticity, colonization
abilities, adaptation to epiphytic habits, and coevolution with hummingbirds. Given high diversity and singularity within
neotropical Ericaceae, along with high levels of habitat alteration, protection of Andean montane ecosystems should become
a priority for the conservation of Ericaceae in the Neotropics.
Resumen La familia de las Ericáceas en el Neotrópico se concentra en los Andes, adaptada a los ambientes montanosos humedos, de vegetación abierta y fríos. La riqueza total de especies se incrementa a medida que se acerca a la línea ecuatorial, encontrándose el mayor número de especies en Colombia y Ecuador entre 1000 y 3000 msnm. Existen 46 géneros (70% endémicos) y aproximadamente 800 especies (ca. 94% endémicas) de Ericáceas nativas en el Neotrópico. Se reconocen cinco regiones biogeográficas para las Ericáceas neotropicales, siendo los Andes del noroeste de Sur América el lugar de mayor diversidad de especies. Después del levantamiento de las cordilleras y de los eventos climáticos del Plioceno y Pleistoceno, las Ericáceas neotropicales sufrieron una dinámica de especiación y una radiación adaptativa debido a la plasticidad ecológica y de formas de vida, a la capacidad de colonización, de adaptación al epifitismo y a la coevolución con colibríes. Dada la alta diversidad y la singularidad de las Ericáceas neotropicales, así como también los altos niveles de alteración de su hábitat, la protección de los ecosistemas alto-andinos debería ser prioridad en los esfuerzos de conservación en el Neotrópico.相似文献
3.
BERNARD MICHAUX 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(1):193-212
The concepts of biogeographical regions and areas of endemism are briefly reviewed prior to a discussion of what constitutes a natural biogeographical unit. It is concluded that a natural biogeographical unit comprises a group of endemic species that share a geological history. These natural biogeographical units are termed Wallacean biogeographical units in honour of the biogeographer A.R. Wallace. Models of the geological development of Indonesia and the Philippines are outlined. Areas of endemism within Wallacea are identified by distributional data, and their relationship to each other and to the adjacent continental regions are evaluated using molecular phylogenies from the literature. The boundaries of these areas of endemism are in broad agreement with earlier works, but it is argued that the Tanimbar Islands are biologically part of south Maluku, rather than the Lesser Sundas, and that Timor (plus Savu, Roti, Wetar, Damar, and Babar) and the western Lesser Sundas form areas of endemism in their own right. Wallacean biogeographical units within Wallacea are identified by congruence between areas of endemism and geological history. It is concluded that although Wallacea as a whole is not a natural biogeographical region, neither is it completely artificial as it is formed from a complex of predominantly Australasian exotic fragments linked by geological processes within a complex collision zone. The Philippines are argued to be an integral part of Wallacea, as originally intended. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 193–212. 相似文献
4.
Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades 总被引:2,自引:0,他引:2
Schoch RR 《Evolution & development》2006,8(6):524-536
In vertebrates, the ontogeny of the bony skull forms a particularly complex part of embryonic development. Although this area used to be restricted to neontology, recent discoveries of fossil ontogenies provide an additional source of data. One of the most detailed ossification sequences is known from Permo-Carboniferous amphibians, the branchiosaurids. These temnospondyls form a near-perfect link between the piscine osteichthyans and the various clades of extant tetrapods, retaining a full complement of dermal bones in the skull. For the first time, the broader evolutionary significance of these event sequences is analyzed, focusing on the identification of sequence heterochronies. A set of 120 event pairs was analyzed by event pair cracking, which helped identify active movers. A cladistic analysis of the event pair data was also carried out, highlighting some shared patterns between widely divergent clades of tetrapods. The analyses revealed an unexpected degree of similarity between the widely divergent taxa. Most interesting is the apparently modular composition of the cranial sequence: five clusters of bones were discovered in each of which the elements form in the same time window: (1) jaw bones, (2) marginal palatal elements, (3) circumorbital bones, (4) skull roof elements, and (5) neurocranial ossifications. In the studied taxa, these "modules" have in most cases been shifted fore and back on the trajectory relative to the Amia sequence, but did not disintegrate. Such "modules" might indicate a high degree of evolutionary limitation (constraint). 相似文献
5.
Luciano Nicolás Naka 《Journal of Biogeography》2011,38(4):681-696
Aim To develop a methodology for defining the boundaries of the Guianan area of endemism using complementary approaches that include GIS tools, multivariate statistics and analyses of physical barriers in the distribution patterns of an entire endemic avifauna. As a case study, I used the distribution patterns of lowland terra firme forest birds. Location Guiana Shield, northern South America. Methods I identified Guianan endemics using the ornithological literature, subsequently gathering distributional data for these taxa using mainly museum collections and my own fieldwork in the region. I used these distributional data to map the spatial patterns of endemicity in the region and to compare distributions across taxa. I employed community composition data from 34 localities from throughout the Guiana Shield to identify spatial patterns of clustering using an ordination analysis (non‐metric multidimensional scaling), and to recognize the region’s main biogeographical barriers for birds using Monmonier’s algorithm. Results At least 88 avian taxa are restricted to the terra firme forests of the Guianan area of endemism, which is roughly delimited by the Amazon, Negro and Branco rivers. These large rivers, however, are not the only boundaries. I identified seven additional barriers, including medium‐sized rivers, non‐forested areas and mountains, which also contribute to delimiting the area of endemism. Within the endemic avifauna, I identified three distinct distribution patterns. The ordination analysis shows the presence of two distinct avifaunas within the Guiana Shield. Main conclusions Although the proposed boundaries of the Guianan area of endemism are consistent with previously postulated configurations, this study reveals a more complex delimitation than formerly recognized, highlighting the importance of several landscape features besides large rivers, and the existence of three distinct distributional patterns within one endemic avifauna. The Branco/Negro interfluvium, often included within this area of endemism, actually represents a transition zone between two distinct avifaunas. The longstanding view of the Amazon Basin as a mosaic of parapatric areas of endemism delimited by major rivers appears to be an oversimplification, at least for the Guiana Shield. This finding suggests the need for more rigorous approaches to re‐evaluate the traditional boundaries of such areas. 相似文献
6.
Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement 总被引:2,自引:0,他引:2
Aim We analyse the geographical distribution of 1911 Afrotropical bird species using indices of three simple biogeographic patterns. The first index, the frequency of species with range edges (Te), is formulated to map directly the density of species distribution limits, for comparison with the results of traditional biogeographical classification and ordination procedures, in order to show variations in the strength and breadth of transition zones. The other two indices are formulated to seek to distinguish as directly as possible between two components within these transition-zone patterns: contributions from gradients in species richness (Tg); and contributions from replacements among species (Tr). We test the ability of these indices to discover the same boundaries among Afrotropical bird faunas as one popular procedure for classifying areas (TWINSPAN) and then use them to look for geographical trends in the different kinds of transition zones. Location The analysis is restricted to the sub-Saharan or Afrotropical region, excluding the Arabian Peninsula, Madagascar and all offshore islands. Methods We record the presence of each species in 1961 1°×1° grid cells of the map. To apply the three indices, each (core) grid cell in turn is compared with its neighbouring eight cells in the grid. The range edges index (Te) counts the number of species with range edges between the core cell and the surrounding cells. The richness gradients index (Tg) counts the largest difference in species richness measured diametrically across the core cell in any direction when there is a consistent trend in richness along this line of three cells. The species replacements index (Tr) counts the number of species pairs recorded within a nine-cell neighbourhood that are not corecorded within any of the cells. Values for each of the 1961 grid cells are calculated and used to produce colour-scale maps of transition zones. Results Large-scale spatial patterns of variation in density of range edges (Te) are consistent with classifications of the same data and with most previous biogeographical classifications proposed for the region. Variation in richness gradients (Tg) and species replacements (Tr) explain different parts of this pattern, with transition zones around humid forests in the equatorial region being dominated by species replacement, and transition zones around deserts (most extensive in the north and south) being dominated by richness gradients. Main conclusions The three indices distinguish the spatial arrangement and intensity of different kinds of transition zones, thereby providing a first step towards a more rigorous mechanistic understanding of the different processes by which they may have arisen and are maintained. As an example of one such pattern shown by our analyses of Afrotropical birds, there is evidence for a broad latitudinal trend in the nature of transition zones in faunal composition (following the latitudinal distribution of the different kinds of habitat transitions), from being dominated by species replacements near the equator to being dominated by richness gradients further from the equator. 相似文献
7.
Juan L. Parra Carsten Rahbek Jimmy A. McGuire Catherine H. Graham 《Journal of Biogeography》2011,38(12):2350-2361
Aim We evaluated the hypothesis that, given niche conservatism, relatedness of co‐occurring hummingbird species of a given clade will increase at greater distances from the elevation where it originated. We also used prior knowledge of flight biomechanics and feeding specialization of hummingbird species (family Trochilidae) to evaluate which environmental variables were important predictors of changes in phylogenetic structure for each hummingbird clade. Location Ecuador. Methods We compiled species lists for 189 local hummingbird assemblages across major environmental gradients in Ecuador from a variety of published and non‐published sources. For the entire family and each of the major hummingbird clades (hermits, emeralds, mangoes, coquettes and brilliants) we quantified the phylogenetic structure of each assemblage using the net relatedness index (NRI). This index calculates the standardized mean of all possible pairwise phylogenetic distances between co‐occurring species. We related NRI for each clade to elevation, precipitation and vegetation‐related variables using generalized additive models. Results Our findings support the prediction of an increase in the co‐occurrence of close relatives away from the elevation of origin at the family level and for assemblages of mangoes and brilliants. The opposite pattern was found for assemblages of coquettes and emeralds. For the hermits, variation in phylogenetic structure was not explained by elevation. Clades with high levels of feeding specialization (hermits and brilliants) always included a vegetation‐related variable as an important predictor of change in phylogenetic structure. Main conclusions We found no overall support for the conservatism and zone of origin hypotheses. Knowledge of each clade’s natural history proved useful for predicting which environmental variables correlated with phylogenetic structure of local assemblages. Clades with the same elevation of origin appear to have radiated along the elevational gradient in association with different environmental factors. 相似文献
8.
Per Ola Karis 《Cladistics : the international journal of the Willi Hennig Society》2006,22(3):199-221
The phylogeny of subtribe Gorteriinae (Asteraceae‐Arctotideae) is investigated by means of cladistic analysis of morphological characters. Two sister groups are formed, namely a Gorteria clade also containing Hirpicium and Gazania, and a Berkheya clade, which also contains Cullumia, Cuspidia, Didelta and Heterorhachis. The Gorteria clade has strong jackknife support and is diagnosed by four morphological characters (leaves with longitudinally striate hairs, fringed anther apical appendages, pollen of the “Gazania‐type”, and subulate‐ensiform, ascending style sweeping hairs) that are unique within the Asteraceae. The Berkheya clade is moderately supported and diagnosed by two characters without contradiction (spiny leaves, and mamillate, large style sweeping hairs). Hirpicium and Berkheya are paraphyletic, with the other, morphologically more homogeneous genera (Gorteria, and Gazania, Cullumia, Cuspidia, Didelta and Heterorhachis, respectively) nested within them. There is some evidence for a radiation of species of the summer rainfall area of South Africa and tropical Africa and the corresponding species are nested within a grade confined to the Cape Floristic Region. © The Willi Hennig Society 2006. 相似文献
9.
Aarón Rodríguez Arturo Castro-Castro Georgina Vargas-Amado Ofelia Vargas-Ponce Pilar Zamora-Tavares Jesús González-Gallegos Pablo Carrillo-Reyes Marco Anguiano-Constante Marco Carrasco-Ortiz Miguel García-Martínez Brandon Gutiérrez-Rodríguez Juvenal Aragón-Parada Christian Valdes-Ibarra Guadalupe Munguía-Lino 《植物分类学报:英文版》2018,56(5):537-549
Mexico is a megadiverse country. Presently, 22 126 species of angiosperms have been registered within its territory and 11 001 are considered to be endemic. However, their geographical distributions are far from homogeneous. In addition, Mexico is the center of diversification of several groups. Our analysis focused on such groups. The aims were to identify areas of species richness and endemism. A data matrix with 766 species and 25 579 geographical records was analyzed. It included Calochortus (Liliaceae); Bletia (Orchidaceae); Tigridieae (Iridaceae); Amaryllidaceae; Poliantheae, Echeandia (Asparagaceae); Crassulaceae; Hylocereus (Cactaceae); Solanum, Lycianthes and Physalinae (Solanaceae); Salvia section Membranaceae (Lamiaceae); and Cosmos and Dahlia (Asteraceae). Using Geographic Information Systems, we determined richness and distribution based on: (i) Mexican political divisions, (ii) biogeographical regions and provinces, (iii) a grid of 0.5 × 0.5° cells, and (iv) elevation. The areas of endemism were estimated using the endemicity analysis. The highest number of taxa and endemic plants were concentrated within the Transmexican Volcanic Belt in the Mexican Transition Zone. This mountain range has been recognized as a province on the basis of geologic, tectonic, geomorphologic, physiographic and biogeographic criteria. It is a 1000 km long volcanic arc that extends east to west through Central Mexico and is variably from 80 to 230 km wide, between 17°30′ to 20°25′N and 96°20′ to 105°20′W. Our results represent a local deviation from the global richness latitudinal gradient of angiosperm species. 相似文献
10.
Aim The areal distributions of Chaetocnema species in the Afrotropical Region have been analysed with the aims of determining the distribution patterns (chorotypes) and identifying the most important areas of endemism for this flea beetle genus in sub‐Saharan Africa. Location Data were collected in sub‐Saharan Africa, including Madagascar. Methods The Afrotropical Region was divided into 103 5° quadrats (operative geographical units, or OGUs). A presence–absence matrix of the Afrotropical Chaetocnema species in the OGUs was analysed by cluster analysis (Baroni Urbani & Buser index and the WPGMA clustering method) to generate distribution pattern data based on similarity of distribution. The most important areas of endemism were identified by parsimony analysis of endemicity. Results The general distribution of Chaetocnema in the Afrotropical Region was found to be associated with moist environments and montane grasslands. Most species exhibit restricted geographical ranges. Cluster analysis revealed 120 spatial distributions that can be grouped into 13 distinct distribution patterns (chorotypes). The most important areas of endemism for Chaetocnema in sub‐Saharan Africa according to the present parsimony analysis of endemicity are: (1) central and eastern Madagascar [endemicity rate (ER) = 61.1%], (2) Western Cape Province (ER = 36.4%), (3) southern Drakensberg (ER = 26.7%), (4) the Shaba Region (ER = 16.7%), and (5) the North‐Kivu Region (ER = 5.0%). Main conclusions There are 123 known species of Chaetocnema in the Afrotropical Region, more than in any other zoogeographical region. About 91% of the species are endemic and they generally exhibit a restricted and often very localized geographical range. The remaining 9% of the species are represented by seven species that also inhabit northern Africa and/or the Arabian peninsula (C. bilunulata Demaison, C. ganganensis Bechyné, C. ljuba Bechyné, C. pulla Chapuis, C. tarsalis Wollaston, and C. wollastoni Baly), three species that widely inhabit the Palaearctic Region (C. conducta (Motschulsky), C. schlaeflini (Stierlin), and C. tibialis (Illiger)), and two species that were introduced (C. confinis Crotch, and C. picipes Stephens). 相似文献
11.
12.
Historical biogeographical patterns of the species of Bursera (Burseraceae) and their taxonomic implications 总被引:1,自引:0,他引:1
Aim The plant genus Bursera, with 104 species of trees and shrubs, has been used as a model for biogeographical analyses because of its high species richness and large number of endemic species. The biogeographical patterns of Bursera and their implications for its phylogenetic classification are reviewed in order that some hypotheses on the historical biogeography of tropical Mexico can be proposed. Location Bursera is found in the south‐western USA, most of Mexico, mainly below 1700 m elevation in tropical forests, with some species in xeric shrublands, diversifying along the Pacific slope, Central America, and north‐western South America. A few species occur on the Galapagos and Revillagigedo archipelagos, some of which are endemics, whereas in the Antilles species are distributed extensively, with several endemics in the Bahamas, Cuba, Jamaica, and Hispaniola. Methods Data from specimens in herbaria and the literature were used to construct a matrix of 104 species in 160 areas. Distributional patterns of the species of Bursera were inferred applying track analysis, parsimony analysis of endemicity (PAE), and Brooks parsimony analysis (BPA). Results Track analysis revealed four individual tracks: (1) a circum‐Caribbean track, comprising species of the Bursera simaruba species group; (2) an Antillean track, including species that have been transferred to Commiphora based on their pollen traits; (3) a Mexican Pacific track, including species of the B. fragilis, B. microphylla, and B. fagaroides species groups, called ‘cuajiotes’; and (4) a Neotropical Pacific track, including the two species groups assigned to section Bullockia, in which the individual track of the Bursera copallifera species group is nested within the track of the B. glabrifolia species group. The four tracks overlap in a node in the Mexican Pacific slope, where they are highly diversified. PAE allowed us to identify 22 areas of endemism: 12 in Mexico (11 along the Mexican Pacific slope), six in the Antilles, two in Central America, one in South America, and one in the Galapagos. The general area cladogram obtained by BPA has two main clades: one includes the greater Antilles; and the other, 12 Mexican areas of endemism. Main conclusions Bursera fragilis, B. microphylla, and B. fagaroides species groups can be treated together as a new section within Bursera, sect. Quaxiotea, because they are segregated from the other groups of sect. Bursera based on morphological, anatomical, molecular and geographical evidence. 相似文献
13.
14.
Kamgan Nkuekam G Wingfield MJ Mohammed C Carnegie AJ Pegg GS Roux J 《Antonie van Leeuwenhoek》2012,101(2):217-241
The genus Ceratocystis includes important fungal pathogens of trees, including Eucalyptus spp. Ironically, very little is known regarding the diversity or biology of Ceratocystis species on Eucalyptus species in Australia, where most of these trees are native. The aim of this study was to survey for Ceratocystis spp., and their possible insect associates, on eucalypts in Australia and thus to establish a foundation of knowledge regarding
these fungi on the continent. Collections were made in three states of Australia from wounds on trees, as well as from nitidulid
beetles associated with these wounds. Ceratocystis spp. were identified based on morphology and multigene sequence comparisons. Of the 54 isolates obtained, two previously
unknown species of Ceratocystis were found and these are described here as Ceratocystis corymbiicola sp. nov. and Ceratocystis tyalla sp. nov. Furthermore, the distribution of Ceratocystis pirilliformis is expanded to include Eucalyptus spp. in Tasmania. 相似文献
15.
A robust phylogeny of 40 genera and all seven families of the Liliales based on rbcL sequences was dated by the mean branch-length method of Bremer and Gustafsson and by Sanderson's nonparametric rate smoothing. The basal node was set to 82 million years (my) from the results of a previous more extensive dating involving all monocots. Confidence intervals for the age estimates were generated by bootstrap analysis. The results indicate that four well-supported clades of Liliales date back to the Cretaceous ~65 million years ago (mya), Campynemataceae, Melanthiaceae, Smilacaceae + Liliaceae, and Alstroemeriaceae + Luzuriagaceae + Colchicaceae. Aspects of historical biogeography were investigated by dispersal-vicariance analysis. Several dispersal and vicariance events were found to coincide with Late Cretaceous-Early Tertiary changes in continental interconnections. The study contains the first published sequence of Campynemanthe, supporting the Campynemataceae as a monophyletic group. 相似文献
16.
Contrasting patterns of Andean diversification among three diverse clades of Neotropical clearwing butterflies 下载免费PDF全文
Nicolas Chazot Donna Lisa De‐Silva Keith R. Willmott André V. L. Freitas Gerardo Lamas James Mallet Carlos E. Giraldo Sandra Uribe Marianne Elias 《Ecology and evolution》2018,8(8):3965-3982
The Neotropical region is the most biodiverse on Earth, in a large part due to the highly diverse tropical Andean biota. The Andes are a potentially important driver of diversification within the mountains and for neighboring regions. We compared the role of the Andes in diversification among three subtribes of Ithomiini butterflies endemic to the Neotropics, Dircennina, Oleriina, and Godyridina. The diversification patterns of Godyridina have been studied previously. Here, we generate the first time‐calibrated phylogeny for the largest ithomiine subtribe, Dircennina, and we reanalyze a published phylogeny of Oleriina to test different biogeographic scenarios involving the Andes within an identical framework. We found common diversification patterns across the three subtribes, as well as major differences. In Dircennina and Oleriina, our results reveal a congruent pattern of diversification related to the Andes with an Andean origin, which contrasts with the Amazonian origin and multiple Andean colonizations of Godyridina. In each of the three subtribes, a clade diversified in the Northern Andes at a faster rate. Diversification within Amazonia occurred in Oleriina and Godyridina, while virtually no speciation occurred in Dircennina in this region. Dircennina was therefore characterized by higher diversification rates within the Andes compared to non‐Andean regions, while in Oleriina and Godyridina, we found no difference between these regions. Our results and discussion highlight the importance of comparative approaches in biogeographic studies. 相似文献
17.
This study aimed to establish if the Lower Río de la Plata Basin (LRPB) wetlands can be considered a biogeographic unit. The species of this area were compiled and segregated according to the habitat, selecting only 87 endemic taxa restricted to the LRPB and linked to wetlands. Distributional data of species obtained from the literature, web databases, biological collections, and field trips were georeferenced. The areas of endemism were established as those areas where the distribution of two or more taxa overlaps in groups of rivers’ sections with geographic continuity and were tested with a cluster analysis. This congruence is due to ecological, geomorphological, and historical factors. Four areas of endemism were found: a broad area that comprises the whole study area (Riverine district), which is divided into three nested smaller areas (Paraguay–Paraná Flooding Valleys, Uruguay Basin, and Paraná Delta subdistricts). Then, we analysed 170 taxa distributions to evaluate the relationship between the study area and the neighbouring biogeographic units. According to the results, the study area belongs to the Paraná biogeographic province. Some areas of endemism are hidden inside broader areas and are hardly detected with the currently used biogeographic grid-methods. We propose to combine the information about ecological requirements of each taxon with its georeferenced records to estimate their areas of distribution as a primary step for searching areas of endemism in intracontinental studies. 相似文献
18.
Sandra Knapp 《The Botanical review》2002,68(1):22-37
Conservation of biodiversity will necessitate choices among areas, taxa, and land-use patterns. Lack of data on distribution and pattern in biodiversity makes these difficult decisions even more problematic for those charged with the conservation and sustainable use of the diversity of life. Quantitative methods have promise in helping with this task in that they allow people to make their values explicit, and they also allow representation and comparison of many different types of data. In this article I examine patterns of species richness and range-size rarity, or endemism, in the Neotropics with a data set from the genusSolanum (Solanaceae). Distribution data for 180 species of forest-dwelling solanums were analyzed. Patterns of species richness, range-size rarity (endemism), and several area-selection methods were examined. Montane areas are relatively rich both in all species and in endemic species, with maximal peaks in the Andes. The peak of species richness coincides with the domain (i.e., continental) midpoint (9°30′ S latitude), suggesting that the pattern observed may be partly due to the geometry of species ranges. TheSolanum results are compared with those obtained for other taxonomic groups in the Neotropics, and problems with quantitative data sets in conservation are discussed. Collecting deficit, parochial taxonomy, and habitat destruction, both historical and current, are all factors that will affect the utility of such analyses. It is clear that if conservation is to work on the ground, we need to know more about what occurs in the montane Neotropics and that continued work at a basic taxonomic level is essential to our ultimate ability to conserve biological diversity. 相似文献
19.
Jesús M. Bastida Julio M. Alcántara Pedro J. Rey Pablo Vargas Carlos M. Herrera 《Plant Systematics and Evolution》2010,284(3-4):171-185
Studies of the North American columbines (Aquilegia, Ranunculaceae) have supported the view that adaptive radiations in animal-pollinated plants proceed through pollinator specialisation and floral differentiation. However, although the diversity of pollinators and floral morphology is much lower in Europe and Asia than in North America, the number of columbine species is similar in the three continents. This supports the hypothesis that habitat and pollinator specialisation have contributed differently to the radiation of columbines in different continents. To establish the basic background to test this hypothesis, we expanded the molecular phylogeny of the genus to include a representative set of species from each continent. Our results suggest that the diversity of the genus is the result of two independent events of radiation, one involving Asiatic and North American species and the other involving Asiatic and European species. The ancestors of both lineages probably occupied the mountains of south-central Siberia. North American and European columbines are monophyletic within their respective lineages. The genus originated between 6.18 and 6.57 million years (Myr) ago, with the main pulses of diversification starting around 3 Myr ago both in Europe (1.25–3.96 Myr ago) and North America (1.42–5.01 Myr ago). The type of habitat occupied shifted more often in the Euroasiatic lineage, while pollination vectors shifted more often in the Asiatic-North American lineage. Moreover, while allopatric speciation predominated in the European lineage, sympatric speciation acted in the North American one. In conclusion, the radiation of columbines in Europe and North America involved similar rates of diversification and took place simultaneously and independently. However, the ecological drivers of radiation were different: geographic isolation and shifts in habitat use were more important in Europe while reproductive isolation linked to shifts in pollinator specialisation additionally acted in North America. 相似文献
20.
Studies of the distribution of South American taxa have identified several areas of endemism that may have contributed to the historical diversification of the region. We constructed a phylogeny of Glyphorynchus spirurus (Aves: Dendrocolaptidae) populations using mtDNA sequence data from portions of cytochrome b, NADH dehydrogenase subunit II (ND2), and complete NADH dehydrogenase subunit III (ND3). Using this phylogeny we evaluate five previous hypotheses of area-relationships, two based on phylogenetic studies of morphological characters in birds and three based on parsimony analysis of endemism in birds and primates. Maximum likelihood and maximum parsimony analyses recovered two phylogenetic hypotheses that differed in the placement of one of the areas. Within each of the areas of endemism, the two analyses support the same clades. Neither of the phylogenetic hypotheses for Glyphorynchus exactly matches any of the five previous hypotheses of area-relationships, although ambiguous support exists for one of them. Five areas-Central America, Inambari, Napo, Pará, and Rond?nia-are supported as composites with component taxa having phylogenetic affinities with more than one area. Data reported here also indicate high levels of sequence divergence within Glyphorynchus. Genetic breaks within Glyphorynchus are only partially congruent with subspecific taxonomy. The regional sampling design used makes this study the largest scale genetic assay of a widespread Neotropical avian taxon published to date. 相似文献