首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the mitochondrial genetic structure of American white pelicans (Pelecanus erythrorhynchos) to: 1) verify or refute whether American white pelicans are panmictic and 2) understand if any lack of genetic structure is the result of contemporary processes or historical phenomena. Sequence analysis of mitochondrial DNA control region haplotypes of 367 individuals from 19 colonies located across their North American range revealed a lack of population genetic or phylogeographic structure. This lack of structure was unexpected because: 1) Major geographic barriers such as the North American Continental Divide are thought to limit dispersal; 2) Differences in migratory behavior are expected to promote population differentiation; and 3) Many widespread North American migratory bird species show historic patterns of differentiation resulting from having inhabited multiple glacial refugia. Further, high haplotype diversity and many rare haplotypes are maintained across the species' distribution, despite frequent local extinctions and recolonizations that are expected to decrease diversity. Our findings suggest that American white pelicans have a high effective population size and low natal philopatry. We suggest that the rangewide panmixia we observed in American white pelicans is due to high historical and contemporary gene flow, enabled by high mobility and a lack of effective physical or behavioral barriers.  相似文献   

2.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

3.
Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.  相似文献   

4.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

5.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

6.
Highly mobile species that thrive in a wide range of habitats are expected to show little genetic differentiation across their range. A limited but growing number of studies have revealed that patterns of broad‐scale genetic differentiation can and do emerge in vagile, continuously distributed species. However, these patterns are complex and often shaped by both historical and ecological factors. Comprehensive surveys of genetic variation at a broad scale and at high resolution are useful for detecting cryptic spatial genetic structure and for investigating the relative roles of historical and ecological processes in structuring widespread, highly mobile species. In this study, we analysed 10 microsatellite loci from over 1900 samples collected across the full range of mule deer (Odocoileus hemionus), one of the most widely distributed and abundant of all large mammal species in North America. Through both individual‐ and population‐based analyses, we found evidence for three main genetic lineages, one corresponding to the ‘mule deer’ morphological type and two to the ‘black‐tailed deer’ type. Historical biogeographic events likely are the primary drivers of genetic divergence in this species; boundaries of the three lineages correspond well with predictions based on Pleistocene glacial cycles, and substructure within each lineage demonstrates island vicariance. However, across large geographic areas, including the entire mule deer lineage, we found that genetic variation fit an isolation‐by‐distance pattern rather than discrete clusters. A lack of genetic structure across wide geographic areas of the continental west indicates that ecological processes have not resulted in restrictions to gene flow sufficient for spatial genetic structure to emerge. Our results have important implications for our understanding of evolutionary mechanisms of divergence, as well as for taxonomy, conservation and management.  相似文献   

7.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status.  相似文献   

8.
Habitat loss, fragmentation, overharvest, and other anthropogenic factors have resulted in population and distribution declines for North American wolverines (Gulo gulo). Currently, wolverines east of the Hudson Bay are endangered and possibly extinct, whereas the status of wolverines throughout the remaining Holarctic is vulnerable. Three previous studies using nuclear loci have detected little to no significant structuring among wolverines sampled across northern Canada. Based on these results it has been suggested that wolverines in northern Canada represent a single, panmictic population. However, as has been shown in numerous studies, in cases of female site fidelity, it is possible to have demographically autonomous populations even with male-biased gene flow. To better assess the genetic structure of wolverines in northern Canada, we examined nine microsatellite loci and DNA sequence variation from a 200 bp fragment of the mitochondrial (mtDNA) control region for 270 wolverines from nine collecting areas representing three regions of northern Canada. In agreement with previous studies, microsatellite analyses revealed a lack of significant population substructure (F ST=0.0004). However, analysis of molecular variance, comparisons of pairwise F ST values and nested-clade analysis of the mtDNA data revealed considerable genetic structuring among samples of wolverines from these three regions of northern Canada. These mitochondrial data provide evidence that wolverines in Canada are genetically structured due to female philopatry. The contrasting patterns of genetic differentiation based on nuclear and mitochondrial data highlight the importance of examining both nuclear and mitochondrial loci when attempting to elucidate patterns of genetic structure.  相似文献   

9.
Many seabirds exhibit high natal philopatry despite their extreme dispersal ability and delayed reproduction, and some exhibit phenotypic clustering in colonies and fostering or adoption of neighbouring chicks. Previous investigations of kinship in a small thick‐billed murre colony Uria lomvia (Alcidae) in Norway revealed high relatedness among breeders on cliff ledges. To investigate the presence of kin groups and within‐colony genetic sub‐structuring elsewhere, we investigated kinship within a larger murre colony on Coats Island, Nunavut, Canada. Morphological (five characters) and genetic data (five microsatellite loci and a fragment of the mitochondrial cytochrome b gene) were analysed. Strong morphological differentiation was found among ledges. Genetic structuring was overall weak but significant at the coarse scale for males among ledges and on the east vs. the west side of the colony. Global spatial autocorrelation analyses did not detect consistent, widespread spatial patterns, although local 2D analyses provided some evidence of a tendency for larger neighbourhood sizes for females and a broad range of small to large neighbourhoods for males. Average within‐ledge relatedness was low overall, but ranged widely from slightly unrelated to greater than the level of cousins in both sexes. Kin‐level relationships occurred on ledges more frequently for same‐sex groups than expected by chance, suggesting that recruiting breeders (especially females) avoid or are unable to settle directly adjacent to relatives particularly of the opposite sex. Behavioural studies of natal dispersal of murres at Coats I. indicating that both sexes are highly philopatric, but that up to one‐fifth of females may disperse, are concordant with this study. Overall, structuring was weaker than in Norway, and may be explained in part by genetic marker and sampling artifacts, and by the lack of genetic equilibrium suspected in the much larger Canadian Arctic colony. Natal philopatry may be an important factor driving the diversification of seabirds and kin groups in other colonies and species and may be more widespread than is currently acknowledged.  相似文献   

10.
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40.  相似文献   

11.
Genetic differentiation among populations may arise from the disruption of gene flow due to local adaptation to distinct environments and/or neutral accumulation of mutations and genetic drift resulted from geographical isolation. Quantifying the role of these processes in determining the genetic structure of natural populations remains challenging. Here, we analyze the relative contribution of isolation‐by‐resistance (IBR), isolation‐by‐environment (IBE), genetic drift and historical isolation in allopatry during Pleistocene glacial cycles on shaping patterns of genetic differentiation in caribou/reindeer populations Rangifer tarandus across the entire distribution range of the species. Our study integrates analyses at range‐wide and regional scales to partial out the effects of historical and contemporary isolation mechanisms. At the circumpolar scale, our results indicate that genetic differentiation is predominantly explained by IBR and historical isolation. At a regional scale, we found that IBR, IBE and population size significantly explained the spatial distribution of genetic variation among populations belonging to the Euro‐Beringian lineage within North America. In contrast, genetic differentiation among populations within the North American lineage was predominantly explained by IBR and population size, but not IBE. We also found discrepancies between genetic and ecotype designation across the Holarctic species distribution range. Overall, these results indicate that multiple isolating mechanisms have played roles in shaping the spatial distribution of genetic variation across the distribution range of a large mammal with high potential for gene flow. Considering multiple spatial scales and simultaneously testing a comprehensive suite of potential isolating mechanisms, our study contributes to understand the ecological and evolutionary processes underlying organism–landscape interactions.  相似文献   

12.
Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White‐nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis.  相似文献   

13.
Biological invasions offer excellent systems to study the evolutionary processes involved in introductions of species to new ranges. Molecular markers can reveal invasion histories and the effects of introductions on amounts and structuring of genetic variation. We used five polymorphic microsatellite loci to elucidate genetic diversity and population structure between native range and introduced range populations of a prominent North American rangeland weed, Centaurea diffusa (Asteraceae). We found that the total number of alleles and the number of private alleles was slightly higher in the native Eurasian range, and that allelic richness did not differ between the ranges, indicating overall levels of diversity were similar in Eurasia and North America. It therefore seems unlikely that this invasion has been affected by genetic bottlenecks or founder effects. Indeed, results of assignment tests suggest that multiple introductions have contributed to North America’s C. diffusa invasion. Additionally, assignment tests show that both Eurasian and North American sites had a strong pattern of mixed genetic ancestry. This mixed assignment corresponded to a lack of geographic population structure among Eurasian samples. The lack of population structure in the native range conflicts with general expectations and findings to date for invasion genetics, and cautions that even species’ native ranges may show signs of recent ecological upheaval. Despite the mixed assignments, North American samples showed strong population structure, suggesting that the invasion has been characterized by long-range dispersal of genetically distinct propagules across the introduced range.  相似文献   

14.
Natal dispersal is a key component of population dynamics in birds. It guarantees the genetic exchange of populations, favours range expansions and reduces intraspecific competition. In general, natal philopatry of migratory passerines is quite low (0–13.5%). In this study, we give evidence that, under specific conditions, migratory populations of passerine birds may show a considerably elevated natal philopatry. In a Linnet Carduelis cannabina population on the remote island of Helgoland in the North Sea, we found an extraordinary high return rate of yearlings (38%), which corresponds exactly to the annual survival rate of the species. Despite being completely migratory, the Linnets of Helgoland apparently return to a large extent to their native area and consequently might support the population maintenance on the island. Further studies are needed to reveal if this high natal philopatry is only an unusual 1-year event or a general characteristic of this partially isolated island population.  相似文献   

15.
Aim Parasites with global distributions and wide host spectra provide excellent models for exploring the factors that drive parasite diversification. Here, we tested the relative force of host and geography in shaping population structure of a widely distributed and common ectoparasite of colonial seabirds, the tick Ixodes uriae. Location Two natural geographic replicates of the system: numerous seabird colonies of the North Pacific and North Atlantic Ocean basins. Methods Using eight microsatellite markers and tick samples from a suite of multi‐specific seabird colonies, we examined tick population structure in the North Pacific and compare patterns of diversity and structure to those in the Atlantic basin. Analyses included population genetic estimations of diversity and population differentiation, exploratory multivariate analyses, and Bayesian clustering approaches. These different analyses explicitly took into account both the geographic distance among colonies and host use by the tick. Results Overall, little geographic structure was observed among Pacific tick populations. However, host‐related genetic differentiation was evident, but was variable among host types and lower than in the North Atlantic. Main conclusions Tick population structure is concordant with the genetic structure observed in seabird host species within each ocean basin, where seabird populations tend to be less structured in the North Pacific than in the North Atlantic. Reduced tick genetic structure in the North Pacific suggests that host movement among colonies, and thus tick dispersal, is higher in this region. In addition to information on parasite diversity and gene flow, our findings raise interesting questions about the subtle ways that host behaviour, distribution and phylogeographic history shape the genetics of associated parasites across geographic landscapes.  相似文献   

16.
17.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

18.
Although two cryptic pipistrelle bat species, Pipistrellus pipistrellus and Pipistrellus pygmaeus , belong among the most common bat species in Europe, it is still unclear whether they can migrate over long distances between summer and winter roosts. Long-distance migratory species may be expected to show low levels of genetic structuring in large areas due to regular mixing of the gene pool by mating that occurs during migration and/or hibernation. Conversely, the dispersal of gametes in sedentary species is spatially restricted, populations are more genetically structured, and isolation by relatively short distance is visible. By analysing diversity of highly variable microsatellites within and among summer colonies of both studied species in central Europe, we found that differentiation between populations is very weak. Both classical F ST and Bayesian clustering approach failed to detect genetic structure among colonies and there was no significant isolation-by-distance pattern. The analyses of relatedness, however, revealed that individuals within colonies are more related than random suggesting philopatry of at least one sex. The results were very similar for the two species. The high level of gene flow among central European populations, even on large geographic distances, is discussed in relation with migrations, dispersal, and mating behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 103–114.  相似文献   

19.
20.
Traditional models of amphibian dispersal and gene flow point to low dispersal and high philopatry. In recent years, this traditional view has been challenged and it appears that no general model holds across taxa. Conservation of amphibians cannot be addressed on an over‐arching scale, but must come on a case‐by‐case basis, especially for range‐restricted species where information on gene flow and migration must be incorporated into conservation efforts. The only two members of the genus Capensibufo Grandison, 1980 (Anura: Bufonidae) are range restricted small bufonids, with distributions limited to montane areas in South Africa. Using a Bayesian analysis of two mitochondrial markers (16S and ND2), we examined the genetic patterns in Capensibufo rosei and Capensibufo tradouwi in order to understand both taxonomic and geographic boundaries. These species were not monophyletic, and demonstrate no clear taxonomic boundaries. Instead, the genus is extremely diverse genetically, with distinct lineages confined to isolated mountains that represent geographic boundaries. In addition, bioclimatic modelling using MAXENT and scenarios of climatic conditions at both the present and last glacial maximum suggest multiple bioclimatic and physical barriers to gene flow at present and in the past. We conclude that members of the genus have very low vagility, that current taxonomic boundaries are inadequate, and that strong geographic structuring has undoubtedly contributed to genetic diversity at the species level, rather than the population level. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 822–834.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号