首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new species of the genus Glyptothorax, Glyptothorax obliquimaculatus sp. nov. is described from the Xiaohei River, a tributary of the Nanting River, Salween drainage, in southwestern Yunnan province, China. This new species can be distinguished from its congeners by the following combination of characteristics: unculiferous ridges of the thoracic adhesive apparatus extending anteriorly onto the gular region; body with irregular dark blotches scattered along lateral surface (blotches mostly oblique); skin smooth on head and body; dorsal spine smooth without serrations on its posterior margin; lips smooth; posterior margin of pectoral spine with 7–8 serrations; dorsal-fin base 11.0–13.2% SL; pectoral-fin length 15.6–19.6% SL; depth of caudal peduncle 8.6–9.8% SL; head width 19.1–24.0% SL; nasal barbel length 23.3–33.3% HL.  相似文献   

2.
Synodontis denticulatus sp. nov. is an endemic from the middle Lufira Basin and its associated tributaries and lakes. The species shows close morphological resemblance to Synodontis greshoffi and Synodontis unicolor, which are widespread Congo Basin and Bangweulu-Mweru endemic species, respectively. However, it differs from both S. greshoffi and S. unicolor by its non-villous skin (v. villous skin), strong and numerous serrations on the posterior margin of the dorsal spine (v. weak and fewer serrations), weak and few serrations on the posterior margin of the pectoral spine (v. strong and numerous serrations), relatively short maxillary barbels (v. long) and its small maximum standard length (89.1 mm LS v. 148.0 and 190.7 mm LS respectively). A DNA barcoding study (coI, mtDNA) revealed that S. denticulatus forms a distinct genetic clade with a genetic distance of 2.18% with S. greshoffi and 0.84% with S. unicolor. Synodontis denticulatus is caught regularly and abundantly as a by-catch in the gillnet fisheries in the middle Lufira lakes. Owing to its small overall size and large bony head, the species has usually no real commercial value but is an important food fish for the fishermen's families.  相似文献   

3.
Pseudobagrus brachyrhabdion sp. nov., from the Yuan Jiang and Xiang Jiang of the middle Yangtze River drainage in Hunan and Guizhou Provinces, South China, is described herein. It is distinguished from all other Pseudobagrus species with a truncate or slightly emarginated caudal fin by an unique combination of the following characters: supraoccipital plate and nuchal plate broadly interspaced and covered with skin; nasal barbels only at most reaching anterior margin of eye; maxillary barbels reaching slightly beyond posterior margin of eye; outer mandibular barbels extending to posterior margin of eye; dorsal fin with a somewhat convex distal margin, origin nearer to pectoral-fin insertion than to pelvic-fin insertion; dorsal-fin spine shorter than pectoral spine, with a somewhat serrated posterior margin; pectoral-fin spine with a smooth anterior margin; anal fin with 20–23 rays, base length 23.8–32.0% of standard length, posterior end of anal-fin base anterior to posterior end of adipose fin base; no longitudinal black band extending along flank; eyes large, diameter 16.3–23.7% of head length; and number of vertebrae 5 + 43–46.  相似文献   

4.
5.
A new species of the catfish genus Centromochlus (Auchenipteridae, Centromochlinae) is described. The new species is diagnosed by having numerous dark rounded blotches over the body and fins, dorsal‐fin spine with serrations anteriorly and smooth posteriorly, anal fin of mature males with three unbranched and seven branched rays, anterior nuchal plate absent and posterior nuchal plate not extended ventrally. The new species is described from a small stream in the Estação Ecológica Serra Geral de Tocantins, a natural reserve in the centre of the Brazilian Cerrado, close to the watershed between the Rio Tocantins and the Rio São Francisco basins. The new species is possibly the sister taxon to the recently described Centromochlus meridionalis from the upper Rio Tapajós. Those two species share with Centromochlus perugiae, from the upper Amazon and upper Paraguay, derived features associated with the modified anal fin in sexually mature males.  相似文献   

6.
Histological examination of serial sections through the abdomen of workers of three species of Myopias ants revealed the presence of several exocrine glands. These include the common venom and Dufour glands as well as the pygidial gland, but also more specific sternal glands and glands associated with the sting base and the gonostyli. Two of these glands have not been reported previously among ants: one is the paired oblong plate gland, that occurs next to the oblong plate and may have a pheromonal function. The other novel gland is the paired sting shaft gland, that occurs at the dorsal side in the proximal region of the sting shaft. A remarkable characteristic of these Myopias ants is that all glands of class-3 show ducts with gradually widening internal diameter. Myopias emeryi shows a clearly more simple variety of abdominal glands than Myopias maligna and M. sp.1.  相似文献   

7.
The pectoral spine of catfishes is an antipredator adaptation that can be bound, locked, and rubbed against the cleithrum to produce stridulation sounds. We describe muscle morphology of the pectoral spines and rays in six species in four genera of North American ictalurid catfishes. Since homologies of catfish pectoral muscles have not been universally accepted, we designate them functionally as the spine abductor and adductor and the arrector dorsalis and ventralis. The four muscles of the remaining pectoral rays are the superficial and deep (profundal) abductors and adductors. The large spine abductor and spine adductor are responsible for large amplitude movements, and the smaller arrector dorsalis and arrector ventralis have more specialized functions, that is, spine elevation and depression, respectively, although they also contribute to spine abduction. Three of the four spine muscles were pennate (the abductor and two arrectors), the spine adductor can be pennate or parallel, and ray muscles have parallel fibers. Insertions of pectoral muscles are similar across species, but there is a shift of origins in some muscles, particularly of the superficial abductor of the pectoral rays, which assumes a midline position in Ictalurus and increasingly more lateral placement in Ameiurus (one quarter way out from the midline), and Pylodictis and Noturus (half way out). Coincident with this lateral shift, the attachments of the hypaxial muscle to the ventral girdle become more robust. Comparison with its sister group supports the midline position as basal and lateral migration as derived. The muscles of the pectoral spine are heavier than muscles of the remaining rays in all species but the flathead, supporting the importance of specialized spine functions above typical movement. Further, spine muscles were larger than ray muscles in all species but the flathead catfish, which lives in water with the fastest currents. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A new anthine fish, Pseudanthias calloura, is described on the basis of three specimens from Palau. The new species differs from other congeners in having a complicated color pattern of the caudal fin and the following characters: moderately forked caudal fin; dorsal fin with 10 spines, the anterior ones being shorter than the rest, and with 16 soft rays; second anal spine shorter than the third; 19 pectoral rays; scales on lateral line 51 (holotype) to 53 (paratypes) in number; tongue without teeth; circumorbital rim with several fleshy projection on posterior part; a row of fine scales occurring asymmetrically behind alternate dorsal spines on both left and right sides; preopercle margin finely serrated; interopercle and subopercle margins smooth. Received: June 9, 1999 / Revised: September 23, 2000 / Accepted: February 23, 2001  相似文献   

9.
The venom glands of several species of elapid snakes are described. The main venom gland consists of many tubules which usually contain large amounts of secretion product. The accessory gland surrounds the entire venom duct and is usually composed of uniform mucous epithelium. The epithelium lining the tubules of the accessory gland of Naja naja is composed of two distinct types of cells. Histochemical tests indicate that the main venom gland reacts with mercury bromphenol blue and PAS but not with alcian blue. The accessory gland reacts with PAS and alcian blue, and not with mercury bromphenol blue. Treatment of sections with sialidase demonstrates the presence of a sialomucin in the accessory gland. Stimulation of the muscles associated with the venom gland offers an indication of the venom expulsion mechanism of Bungarus caeruleus. A comparison of the venom apparatus of elapid and viperid snakes emphasizes marked differences in the internal anatomy of the venom glands, muscles associated with the gland, and arrangement of glandular components. The morphological differences and dissimilar venom expulsion mechanisms support the recent view of the polyphyletic origin of venomous snakes.  相似文献   

10.
A new species of the genus Sinocyclocheilus is described based on specimens collected from Zuojiang River drainage, Guangxi, China. The new species, named Sinocyclocheilus jinxiensis, is distinguished from all congeners by its vestigial eyes, short barbels, long pectoral fin, eight to nine branched dorsal-fin rays, last unbranched dorsal-fin ray soft with serrations on posterior edge of its lower part, and 38–41 lateral line scales.  相似文献   

11.
After 80 years of misidentifications, the analysis of the holotype of Corydoras arcuatus plus several non-type specimens attributed to this species allowed its recognition and also revealed a new species, both sharing the following diagnostic features: a long, arched, continuous black stripe that runs parallel to the dorsal profile of the body and extends at least from the anterior margin of the first dorsolateral body plate to the posterior portion of caudal peduncle; absence of transverse black bars on caudal fin; infraorbital 2 in contact with sphenotic and compound pterotic. In addition to these features, C. arcuatus can be distinguished from congeners by having the posterior margin of both dorsal and pectoral spines with laminar serrations directed towards their origins. The new species can be additionally distinguished from its congeners by presenting the following combination of features: ventral surface of trunk entirely or partially covered by relatively large and coalescent platelets; absence of spots or blotches on dorsal fin; and posterior margin of both dorsal and pectoral spines with serrations directed towards their tips. Finally, an identification key to all arc-striped species of Corydoras is provided.  相似文献   

12.
The evolution of venom-delivery systems in snakes   总被引:3,自引:0,他引:3  
The Colubroidea represents approximately 2300 of the 2700 species of living snakes and includes all venomous taxa. Although many morphological studies of colubroid snakes have been carried over the last hundred years, the phylogenetic relationships within this group are poorly known. In this study, components of the venom-delivery system (VDS) were examined within the context of two conflicting phylogenetic hypotheses proposed in 1988 by Cadle and in 1998 by Kraus & Braun. The results suggest that several major morphological changes occurred early in colubroid evolution: a Duvernoy's gland evolved, the posterior maxillary teeth became specialized relative to the anterior maxillary teeth, and the attachment of the pterygoideus muscle moved forward to a position associated with the posterior maxillary teeth. These innovations may have allowed the great radiation of colubroid snakes that led to the Colubroidea representing such a large percentage of living snakes. More recently, three separate lineages of colubroids have independently evolved highly specialized front-fanged VDSs with large and complex venom glands, venom gland compressor muscles, and tubular fangs.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 137 , 337−354.  相似文献   

13.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

14.
Melanin deposits in the heads of both true vipers (Viperinae) and pit vipers (Crotalinae) are concentrated over the dorsal and dorsolateral aspects of the venom glands. This pigment may occur in any or all of six sites which include the epidermis, dermis, tissues covering the venom glands, and the interior of the glands themselves. The extreme localization of these melanin deposits suggests that they shield the venom glands from light. Calculations indicate that without such shielding the light energy penetrating the venom glands in the visible and ultraviolet portions of the solar spectrum would damage the venom-synthesizing apparatus and detoxify stored venom. Elapid and hydrophiid snakes have less dense pigment over the venom gland than vipers. Literature reports indicate that elapid venom is less sensitive to photodetoxification than is venom from vipers. Most colubrid snakes, including several with protein-secreting Duvernoy's glands, have little or no melanin associated with the glands. Venomous colubrids in the genera Ahaetulla, Dryophis, Leptophis, and Oxybelis have pigment over the glands as dense as that seen in vipers. Iridophores probably also shield venom glands from radiation. In puff adders and Gaboon vipers (Bitis) there appears to be an ontogenetic change in the shielding of the venom glands from melanocytes in young individuals to iridophores in adults.  相似文献   

15.
Gazza squamiventralis sp. nov. is described as the fifth species of the genus, based on the holotype and eight paratypes, 42–96 mm in standard length, collected along the east coast of Africa, from Kenya to Mozambique. The species is similar to other congeners in general appearance, differing clearly from them in having the ventrolateral surface of the body scaled anterior to a line from the pectoral fin base to the pelvic fin origin (vs naked) and a smooth supraorbital ridge (vs finely serrated). Additionally, the species differs from G. dentex, G. rhombea, and G. achlamys in having the dorsolateral surface of the body scaled anterior to a vertical through the tip of the posterior branch of the supratemporal canal (vs corresponding region naked), and from G. minuta in having the first dorsal fin pterygiophore narrowly expanded anteriorly, with a concave margin (vs broadly expanded, with a convex or linear margin), and a short antrorse extension of the first anal fin pterygiophore (vs long). A key to the five species of the genus Gazza is provided. Received: May 30, 2000 / Revised: September 16, 2000 / Accepted: January 16, 2001  相似文献   

16.
17.
Hybodontoid and nonhybodontoid sharks are described from the Lower Triassic Vega‐Phroso Siltstone Member of Sulphur Mountain Formation on the basis of newly discovered material. The age of the classic fossil site ‘Wapiti Lake’ in the Canadian Rocky Mountains is discussed on the basis of new field data and one conodont found in association. Preliminary results suggest that these elasmobranch remains are between early Smithian and Spathian in age. Apart from the enigmatic genus Listracanthus and previously reported edestoids, the shark fauna consists of at least one hybodont, at least two questionable hybodontoid genera and an elasmobranch of enigmatic affinities, represented by peculiar denticles only and described as ‘genus A’incertae sedis. The presence of the only previously reported hybodont genus, cf. Palaeobates, is erroneous. The largest specimen represents the most complete Early Mesozoic shark known. The heterodonty of its dentition, fin spine morphology and the short, robust body shape imply it represents a member of a new family of shark, Wapitiodidae fam. nov. , and is described here as Wapitiodus aplopagus gen. et sp. nov. The unique dental morphology shows affinities to Polyacrodus but clearly differs in the complete lack of side cusps. Wapitiodus gen. nov. possesses a primitive fin spine structure. The tooth crowns are entirely blunt in the distal (posterior) tooth files, and are acuminate‐unicuspid in several anterior files. Tooth morphology, the shape of the basal cartilages, the proximal insertion of the fin spines and the pectoral fin structure are interpreted as diagnostic characters for this new genus, and possibly for the Wapitiodidae fam. nov. The majority of observed characters appear to be primitive and are reminiscent of Palaeozoic sharks, however, and these features include dorsal fin spine morphology and gross skull anatomy. A second species, provisionally placed in the same genus, is described as Wapitiodus homalorhizo sp. nov. Wapitiodus homalorhizo sp. nov. can be distinguished from W. aplopagus gen. et sp. nov. by the proportions of the fin spines, tooth morphology and possibly the body shape. Several isolated teeth and other fragmentary material are referred to either Wapitiodus gen. nov. sp. indet. or to ?Polyacrodus sp. (Polyacrodontidae gen. et sp. indet.). A third genus of elasmobranch (incertae sedis) is described as ‘Genus A’ and is recognized by its peculiar scales. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149 , 309–337.  相似文献   

18.
Stridulatory sound-producing behavior is widespread across catfish families, but some are silent. To understand why, we compared spine morphology and ecotype of silent and vocal clades. We determined vocal ability of laboratory specimens during disturbance behavior. Vocal families had bony (not flexible or segmented) spines, well-developed anterior and/or posterior serrations, and statistically significantly longer spines. We compared morphology of the proximal end of the pectoral spine between vocal and silent species. For vocal taxa, microscopic rounded or bladed ridges or knobs were present on the dorsal process. Most silent species had reduced processes with exclusively smooth, convoluted, or honeycombed surfaces very similar to spine-locking surfaces, or they had novel surfaces (beaded, vacuolated, cobwebbed). Most callichthyids had ridges but many were silent during disturbance. All doradid, most auchenipterid and most mochokid species were vocal and had ridges or knobs. Within the Auchenipteridae, vocal species had spines with greater weight and serration development but not length. Silent auchenipterids had thin, brittle, distally segmented spines with few microscopic serrations on only one margin and a highly reduced dorsal process lacking any known vocal morphology. Silent auchenipterids are derived and pelagic, while all vocal genera are basal and benthopelagic. This is the first phylogenetic evidence for stridulation mechanism loss within catfishes. Phylogenetic mapping of vocal ability, spine condition, and ecotype revealed the repeated presence of silence and vocal taxa, short and long spines, and ecotype shifts within clades. The appearance and loss of vocal behavior and supporting morphologies may have facilitated diversification among catfishes [Current Zoology 56 (1): 73-89 2010].  相似文献   

19.
The venom glands and related muscles of sea snakes conform in their general structure to those of the terrestrial elapids. The venom gland, however, is smaller in size and the accessory gland is considerably reduced. A similar pattern is found in the Australian elapid Notechis. The musculus compressor glandulae is well developed in the sea snakes and in some species its posterior-medial portion runs uninterruptedly from the origin to the insertion of the muscle. This might be considered as a primitive condition suggesting an early divergence of the sea snakes from an ancestral elapid stock. Three species of sea snakes, Aipysurus eydouxi, Emydocephalus annulatus, and E. ijimae, feed on fish eggs and have very small, but still functioning, venom glands. The reduced accessory gland of the sea snakes is apparently connected with their aquatic environment, as a similar condition is found also in the elapine Boulengerina annulata which lives in large lakes of Central Africa. The similarity in structure of the venom gland between sea snakes and Notechis scutatus may point to a possible phylogenetic relationship between this group of Australian elapids and hydrophiine snakes.  相似文献   

20.
Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号