首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient selective oxidation of sulfides to sulfoxides by molecular oxygen catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride (Ru(TPP)Cl) with isobutyraldehyde as oxygen acceptor has been reported. In large-scale experiment of thioanisole oxidation, the isolated yield of sulfoxide of 92% was obtained and the turnover number reached up to 92,000.  相似文献   

2.
Efficient selective oxidation of alcohols to carbonyl compounds by molecular oxygen with isobutyraldehyde as oxygen acceptor in the presence of metalloporphyrins has been reported. Ruthenium (III) meso-tetraphenylporphyrin chloride (Ru(TPP)Cl) showed excellent activity and selectivity for oxidation of various alcohols under mild conditions. Moreover, different factors influencing alcohols oxidation, for example, catalyst, solvent, temperature, and oxidant, have been investigated. In large-scale oxidation of benzyl alcohol, the isolated yield of benzaldehyde of 89% was observed.  相似文献   

3.
Efficient oxidation of Hantzsch 1,4-dihydropyridines to their corresponding pyridine derivatives with (Bu(4)N)IO(4) catalyzed by tetraphenylporphyrinatomanganese(III) chloride [Mn(TPP)Cl] is reported. This catalytic system shows high efficiency in the oxidation of 1,4-dihydropyridines at room temperature in the presence of imidazole.  相似文献   

4.
The function of Mn(III) in plant acid phosphatase has been investigated by a metal-substitution study, and some properties of the Fe(III)-substituted enzyme were compared with those of the native Mn(III) enzyme and mammalian Fe(III)-containing acid phosphatases. 19F nuclear magnetic resonance (NMR) and proton relaxation rate measurements showed that inhibitors such as F and nitrilotriacetic acid interact with paramagnetic Mn(III) active site. The 31P-NMR signal of the enzyme-phosphate complex was also broadened by the paramagnetic effect of Mn(III). In the metal-substitution experiments of the Mn(III)-acid phosphatase with Fe(III), Zn(II) and Cu(II), only the iron gave satisfactory substitution. The Fe(III)-substituted plant acid phosphatase exhibited an absorption maximum at 525 nm (ε = 3000), typical high spin ferric ESR signal at g = 4.39, and lower pH optimum (pH 4.8) than the native Mn(III)-enzyme (pH 5.8). The phosphatase activity of the Fe(III)-substituted enzyme was reduced to about 53% of that of the native enzyme. The substrate specificities of both metallophosphatases were remarkably similar, but different from that of the Fe(III)-containing uteroferrin. The present results indicate that Mn(III) and Fe(IIII) in the acid phosphatase play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4–6.  相似文献   

5.
Apoconalbumin binds Mn(II) at two sites with association constants of K1 = 7 (+/- 1) X 10(4) and K2 = 0.4 (+/- 0.25) X 10(4) M-1. The binding is tighter in the presence of excess bicarbonate resulting in K1 = 1.8 (+/- 0.2) X 10(5) and K2 = 3 (+/- 2) X 10(4) M-1. The electron paramagnetic resonance spectrum (at both 9 and 35 GHz) of Mn(II) bound at the tight site reveals a rhombic distortion (lambda = E/D approximately equal to 0.25-0.31) in the protein ligand environment of the mental ion. An evaluation of the 1/pT1p, paramagnetic contribution to the longitudinal relaxation rate of solvent protons with Mn(II)-, Mn(III)-, and Fe(III)-derivatives of conalbumin revealed that the mental ion in each site of conalbumin is accessible to one water molecule. For Mn(II)-conalbumin and Mn(III)-conalbumin species, inner coordination sphere protons are rapidly exchanging with the bulk solvent, while slow exchange conditions prevail for Fe(III)-conalbumin.  相似文献   

6.
The peroxidation of C18 unsaturated fatty acids by fungal manganese peroxidase (MnP)/Mn(II) and by chelated Mn(III) was studied with application of three different methods: by monitoring oxygen consumption, by measuring conjugated dienes and by thiobarbituric acid-reactive substances (TBARS) formation. All tested polyunsaturated fatty acids (PUFAs) were oxidized by MnP in the presence of Mn(II) ions but the rate of their oxidation was not directly related to degree of their unsaturation. As it has been shown by monitoring oxygen consumption and conjugated dienes formation the linoleic acid was the most easily oxidizable fatty acid for MnP/Mn(II) and chelated Mn(III). However, when the lipid peroxidation (LPO) activity was monitored by TBARS formation the linolenic acid gave the highest results. High accumulation of TBARS was also recorded during peroxidation of linoleic acid initiated by MnP/Mn(II). Action of Mn(III)-tartrate on the PUFAs mimics action of MnP in the presence of Mn(II) indicating that Mn(III) ions are involved in LPO initiation. Although in our experiments Mn(III) tartrate gave faster than MnP/Mn(II) initial oxidation of the unsaturated fatty acids with consumption of O2 and formation of conjugated dienes the process was not productive and did not support further development of LPO. The higher effectiveness of MnP/Mn(II)-initiated LPO system depends on the turnover of manganese provided by MnP. It is proposed that the oxygen consumption assay is the best express method for evaluation of MnP- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids.  相似文献   

7.
8.
Dissimilatory Fe(III) and Mn(IV) reduction.   总被引:56,自引:1,他引:56       下载免费PDF全文
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.  相似文献   

9.
10.
The enantioselective epoxidation of 6-cyano-2,2-dimethylchromene (Chrom) catalysed by the Jacobsen catalyst, using sodium hypochlorite (NaOCl) as oxygen source, at room temperature, was performed in a series of 1,3-dialkylimidazolium and tetra-alkyl-dimethylguanidium based ionic liquids. All the room temperature ionic liquids (RTILs) could be used as reaction media for the enantioselective epoxidation of the alkene giving, generally, moderate to good epoxide yields and enantiomeric excesses (ee%).For the series of ionic liquids derived from the 1,3-dialkylimidazolium cation, it was observed some relationship between the RTILs physical properties and the catalytic reaction parameters, exemplified by linear correlations between (i) the ee% and the α Kamlet-Taft parameter (hydrogen bond acidity of the solvent) for CH2Cl2 and [C4mnim][BF4] ionic liquids (n = 1 or 2), and (ii) the ee% and the β Kamlet-Taft parameter (hydrogen bond basicity of the solvent) for CH2Cl2 and [C4mim][X] ionic liquids (X = PF6, NTf2 or BF4).All the RTILs could be reused in further catalytic cycles, with the exception of [C8mim][PF6]. The reutilisation of the Jacobsen catalyst for four times generally led to a decrease in the epoxide yield and to a slight decrease in the enantioselectivity. The recycling of the catalyst could be improved by imparting an ionic character to the complex through abstraction of the axially coordinated chloride anion (Cat 2). Other oxygen sources, such as iodosylbenzene, hydrogen peroxide and urea-hydrogen peroxide adduct, were also tested coupled with Jacobsen catalyst, but the best results were achieved with NaOCl.  相似文献   

11.
Kuntzleman T  Yocum CF 《Biochemistry》2005,44(6):2129-2142
Hydroxylamine and hydroquinone were used to probe the oxidation states of Mn in the oxygen-evolving complex of dark-adapted intact (hydroxylamine) and salt-washed (hydroquinone) photosystem II. These preparations were incubated in the dark for 24 h in the presence of increasing reductant/photosystem II ratios, and the loss of oxygen evolution activity and of Mn(II) was determined for each incubation mixture. Monte Carlo simulations of these data yielded models that provide insight into the structure, reactivity, and oxidation states of the manganese in the oxygen-evolving complex. Specifically, the data support oxidation states of Mn(III)(2)/Mn(IV)(2) for the dark stable S(1) state of the O(2)-evolving complex. Activity and Mn(II) loss data were best modeled by assuming an S(1) --> S(-)(1) conversion of intermediate probability, a S(-)(1) --> S(-)(3) reaction of high probability, and subsequent step(s) of low probability. This model predicts that photosystem II Mn clusters that have undergone an initial reduction step become more reactive toward a second reduction, followed by a slower third reduction step. Analysis of the Mn(II) release parameters used to model the data suggests that the photosystem II manganese cluster consists of three Mn atoms that exhibit a facile reactivity with both reductants, and a single Mn that is reducible but sterically trapped at or near its binding site. Activity assays indicate that intact photosystem II centers reduced to S(-)(1) can evolve oxygen upon illumination, but that these centers are inactive in preparations depleted of the extrinsic 23 and 17 kDa polypeptides. Finally, it was found that a substantial population of the tyrosine D radical is reduced by hydroxylamine, but a smaller population reacts with hydroquinone over the course of a 24 h exposure to the reductant.  相似文献   

12.
【背景】酚类化合物是环境中主要的水体污染物之一。多功能过氧化物酶(versatile peroxidase,VP)介导的Mn (III)-有机酸络合体系具有较高的氧化还原电势,在酚类有机污染物降解方面具有巨大潜力。【目的】探究VP介导的Mn (III)-有机酸络合体系降解酚类化合物的能力,为酚类化合物的降解提供新的思路和方法。【方法】研究选取了糙皮侧耳(Pleurotus eryngii)来源的多功能过氧化物酶(PeVP),采用包涵体复性的方法获得了PeVP活性蛋白,并对重组PeVP进行酶学性质研究及Mn (III)络合体系反应条件优化,进而探究Mn (III)络合体系对酚类污染物的氧化降解能力。【结果】确定了PeVP包涵体复性最佳条件为:pH 9.5、10%甘油、0.5 mol/L尿素、0.5 mmol/L氧化型谷胱甘肽(glutathione oxidized,GSSG)、0.1 mmol/L二硫苏糖醇(dithiothreitol,DTT)、0.1 mmol/L乙二胺四乙酸(ethylenediamine tetraacetic acid,EDTA)、5 mmol/L CaCl2、5µmol/L羟高铁血红素(hematin),4℃静置透析24 h,最后5µmol/L hematin孵育12 h。通过对PeVP介导的Mn (III)-有机酸络合体系优化,确定了最优反应条件为:75 mmol/L苹果酸缓冲液(pH 4.5)、6 mmol/L Mn2+和0.2 mmol/L H2O2。在上述条件下,探究了络合体系对2,2-丁香醛连氮-双-3-乙基苯并噻唑啉-6-磺酸[2,2ʹ-azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS]、2,6-二甲氧基苯酚(2,6-dimethoxyphenol,DMP)、愈创木酚和丁香醛连氮4种酚类模式底物的催化活性,发现在pH 4.5条件下,络合体系对酚类模式底物的氧化活性可达到PeVP直接氧化活性的1.5−7.5倍,并且在16 h的酶解过程中,苯酚、对苯二酚、间苯二酚和对硝基苯酚的平均降解速率分别为10.91、10.69、6.50和5.71 mg/(L·h),推测Mn (III)-有机酸络合物对酚类底物的氧化降解是通过夺取酚类底物的电子形成酚类自由基中间体,自由基中间体经过电子重排和C−C键的断裂,最终导致酚类物质的氧化降解。【结论】在弱酸(pH 4.5)条件下PeVP介导的Mn (III)-苹果酸络合体系对酚类污染物具备较强的氧化能力,这为酚类有机污染物提供了新的生物解决方案。  相似文献   

13.
14.
Complex formation between Arsenazo III and Mn2+ and Co2+ at equilibrium has been investigated at pH 7.2, and the stoichiometry and stability of the complexes have been determined. The data indicate that Arsenazo III is suitable for determination of Mn2+ and Co2+ on the micromolar scale. The dissociation constants of the phosphate complexes of Mn2+ and Co2+ at pH 7.2 were estimated with Arsenazo III as 3.6 and 10 mM, respectively.  相似文献   

15.
Among Polystomatidae (Monogenea), the genus Polystoma, which mainly infests neobatrachian hosts, is the most diverse and occurs principally in Africa, from where half the species have been reported. Previous molecular phylogenetic studies have shown that this genus originated in South America, and later colonised Eurasia and Africa. No mention was made on dispersal corridors between Europe and Africa or of the origin of the African Polystoma radiation. Therefore, a molecular phylogeny was inferred from ITS1 sequences of 21 taxa comprising two species from America, seven representatives from Europe and 12 from Africa. The topology of the phylogenetic tree reveals that a single event of colonisation took place from Europe to Africa and that the putative host carrying along the ancestral polystome is to be found among ancestral pelobatids. Percentage divergences estimates suggest that some presumably distinct vesicular species in unrelated South African anurans and some neotenic forms found in several distinct hosts in Ivory Coast, could, in fact, belong to two single polystome species parasitising divergent hosts. Two main factors are identified that may explain the diversity of African polystomes: (i), we propose that following some degree of generalism, at least during the juvenile stages of both hosts and parasites, distinctive larval behaviour of polystomes engenders isolation between parasite populations that precludes sympatric speciations; (ii), cospeciation events between Ptychadena hosts and their parasites are another factor of diversification of Polystoma on the African continent. Finally, we discuss the systematic status of the Madagascan parasite Metapolystoma, as well as the colonisation of Madagascar by the host Ptychadena mascareniensis.  相似文献   

16.
The FTIR and Laser-Raman spectra of paraldehyde have been recorded in the regions 4000–400 cm−1 and 3500–250 cm−1 respectively. Molecular electronic energy, geometrical structure, harmonic vibrational spectra, infrared intensities and Raman scattering activities have been computed at the HF/6-31G(d,p) and B3LYP/6-31G(d,p) levels of theory. The results were compared with experimental values with the help of scaling procedures. The observed wave numbers in FTIR and Laser-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range and are in good agreement with computed values.  相似文献   

17.
Six-coordinate low-spin iron(III) porphyrinates adopt either common (d(xy))(2)(d(xz),d(yz))(3) or less common (d(xz),d(yz))(4)(d(xy))(1) ground state. In this review article, three major factors that affect the electronic ground state have been examined. They are (i) nature of the axial ligand, (ii) electronic effect of peripheral substituents, and (iii) deformation of porphyrin ring. On the basis of the (1)H NMR, (13)C NMR, and EPR data, it is now clear that (i) the axial ligands with low-lying pi* orbitals such as tert-butylisocyanide and 4-cyanopyridine, (ii) the electron donating groups at the meso-carbon atoms, and (iii) the ruffled deformation of porphyrin ring stabilize the (d(xz),d(yz))(4)(d(xy))(1) ground state. By manipulating these factors, we are able to prepare various low-spin iron(III) porphyrinates with unusual electronic structures such as bis(imidazole) complexes with the (d(xz),d(yz))(4)(d(xy))(1) ground state or bis(tert-butylisocyanide) complexes with the (d(xy))(2)(d(xz),d(yz))(3) ground state; bis(imidazole) and bis(tert-butylisocyanide) complexes usually adopt the (d(xy))(2)(d(xz),d(yz))(3) and (d(xz),d(yz))(4)(d(xy))(1) ground state, respectively.  相似文献   

18.
Abstract

Reductive immobilization of Cr(VI) has been widely explored as a cost-effective approach for Cr-contaminated site remediation. In soils containing manganese oxides, however, the immobilized form of chromium, i.e., Cr(III), could potentially be reoxidized. In this study, batch experiments were conducted to assess whether there were any microbial processes that could accelerate Cr(III) oxidation in aerobic, manganese-containing systems. The results showed that in the presence of at least one species of manganese oxidizers, Pseudomonas putida, Cr(III) oxidation took place at low concentrations of Cr(III). About 30–50% of added Cr(III) (10–200 μ M) was oxidized to Cr(VI) within five days in the systems with P. putida and biogenic Mn oxides. The rate of Cr(III) oxidation was approximately proportional to the initial concentration of Cr(III) up to 100 μ M, but the growth of P. putida was partially inhibited by Cr(III) at 200 μ M and totally stopped when it reached 500 μ M. Cr(III) oxidation was dependent upon the biogenic formation of Mn oxides, though the oxidation rate was not directly proportional to the amount of Mn oxides formed. Chromium(III) oxidation took place through a catalytic pathway, in which the microbes mediated Mn(II) oxidation to form Mn-oxides, and Cr(III) was subsequently oxidized by the biogenic Mn-oxides.  相似文献   

19.
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.  相似文献   

20.
《Free radical research》2013,47(4):430-440
Abstract

The present work addresses the role of two ortho-substituted Mn(III) N-alkylpyridylporphyrins, alkyl being ethyl in MnTE-2-PyP5+ and n-hexyl in MnTnHex-2-PyP5+, on the protection against the oxidant tert-butylhydroperoxide (TBHP). Their protective role was studied in V79 cells using endpoints of cell viability (MTT and crystal violet assays), intracellular O2?– generation (dihydroethidium assay) and glutathione status (DTNB and monochlorobimane assays). MnPs per se did not show cytotoxicity (up to 25 μM, 24 h). The exposure to TBHP resulted in a significant decrease in cell viability and in an increase in the intracellular O2?– levels. Also, TBHP depleted total and reduced glutathione and increased GSSG. The two MnPs counteracted remarkably the effects of TBHP. Even at low concentrations, both MnPs were protective in terms of cell viability and abrogated the intracellular O2?– increase in a significant way. Also, they augmented markedly the total and reduced glutathione contents in TBHP-treated cells, highlighting the multiple mechanisms of protection of these SOD mimics, which at least in part may be ascribed to their electron-donating ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号