首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Objective : To explore the role of endothelin‐1 (ET‐1) on lipid metabolism, we examined the effect of ET‐1 on lipolysis in rat adipocytes. Research Methods and Procedure : Adipocytes isolated from male Sprague‐Dawley rats, weighing 400 to 450 grams, were incubated in Krebs‐Ringer buffer with or without 10?7 M ET‐1 for various times or with various concentrations of ET‐1 for 4 hours; then glycerol release into the incubation medium was measured. In addition, selective ETAR and ETBR blockers were used to identify the ET receptor subtype involved. We also explored the involvement of cyclic adenosine monophosphate (cAMP) in ET‐1‐stimulated lipolysis using an adenylyl cyclase inhibitor and by measuring changes in intracellular cAMP levels in response to ET‐1 treatment. To further explore the underlying mechanism of ET‐1 action, we examined the involvement of the extracellular signal‐regulated kinase (ERK)‐mediated pathways. Results : Our results showed that ET‐1 caused lipolysis in rat adipocytes in a time‐ and dose‐dependent manner. BQ610, a selective ETAR blocker, blocked this effect. The adenylyl cyclase inhibitor, 2′, 5′‐dideoxyadenosine, had no effect on ET‐1‐stimulated lipolysis. ET‐1 did not induce an increase in intracellular cAMP levels. In addition, ET‐1‐induced lipolysis was blocked by inhibition of ERK activation using PD98059. Coincubation of cells with ET‐1 and insulin suppressed ET‐1‐stimulated lipolysis. Discussion : These findings show that ET‐1 stimulates lipolysis in rat adipocytes through the ETAR and activation of the ERK pathway. The underlying mechanism is cAMP‐independent. However, this non‐conventional lipolytic effect of ET‐1 is inhibited by the anti‐lipolytic effect of insulin.  相似文献   

2.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

4.
Macrophage infiltration into adipose tissue (AT‐MP) is thought to induce insulin resistance and diabetes in obesity. Here, we investigated the effect of the antiobesity drug SR141716 (a CB1 antagonist) on macrophage‐mediated inhibition of insulin signaling in adipocytes. THP1 macrophages (THP1) were stimulated in vitro with lipopolysaccharide (LPS) and SR141716 or vehicle. The resulting conditioned medium (CM) was analyzed and incubated on human adipocytes. CM from LPS‐stimulated THP1 inhibited insulin‐induced AKT phosphorylation in adipocytes, in contrast to CM from nonactivated THP1. Moreover, it contained higher concentrations of tumor necrosis factor‐α (TNFα) and lower levels of the anti‐inflammatory cytokine IL‐10. SR141716 reduced TNFα production and increased IL‐10 secretion, resulting in a rescue of insulin signaling in adipocytes. To confirm these findings in vivo, AT‐MP CM from cafeteria diet‐fed or Zucker diabetic fatty (ZDF) rats that had received SR141716 for 3 weeks were isolated, analyzed, and incubated with adipocytes. Cafeteria diet induced macrophage‐mediated inhibition of insulin signaling in adipocytes. Interestingly, SR141716 rescued insulin‐induced glucose uptake in adipocytes. Finally, AT‐MP CM from obese ZDF rats inhibited insulin‐stimulated glucose uptake in adipocytes in contrast to AT‐MP CM from lean ZDF rats. After treatment with SR141716, AT‐MP CM rescued insulin‐induced glucose uptake in adipocytes. In summary, our data indicate that CB1 receptor antagonism in macrophages modified their cytokine production and improved the insulin responsiveness of adipocytes that had been incubated with macrophage CM. Thus, SR141716 ameliorated adipose tissue insulin resistance by direct action on AT‐MP demonstrating a novel peripheral mode of action of CB1 antagonism.  相似文献   

5.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

6.
Myosin II (MyoII) is required for insulin-responsive glucose transporter 4 (GLUT4)-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC) of MyoIIA via myosin light chain kinase (MLCK). The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy) ethane-N,N,N'',N''-tetra acetic acid, (BAPTA) (in the presence of insulin) impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.  相似文献   

7.
Objective: To investigate the involvement of α1‐adrenoceptors in the sympathetic regulation of glucose uptake in human adipocytes. Research Methods and Procedures: Twenty‐four severely obese subjects participated in this study. The microdialysis technique was used to determine interstitial glucose concentration after stimulation of abdominal subcutaneous adipose tissue with the α1‐agonist norfenefrine, the α1, 2β‐agonist norepinephrine, and both agents in combination with the α1‐antagonist urapidil. The effect of β‐adrenoceptor stimulation was assessed by orciprenaline. Changes in local blood flow were determined using the ethanol escape technique. Results: Both norfenefrine and norepinephrine induced a concentration‐dependent decrease of interstitial glucose concentration, with a greater decrease observed with norepinephrine. Preperfusion of adipose tissue with urapidil inhibited glucose decrease. The inhibition was overcome with high concentrations of norfenefrine and norepinephrine, respectively. Both adrenergic agents induced tachyphylaxia. Urapidil enhanced extracellular glucose level at high concentration. Blood flow decreased in the presence of norfenefrine and norepinephrine but increased in response to urapidil. The accelerated blood flow due to urapidil was counteracted by norepinephrine and norfenefrine. Orciprenaline decreased interstitial glucose concentration and increased nutritive blood flow. The observed changes in blood flow induced by adrenergic agents were not related to glucose uptake. Discussion: The stimulatory effect of the sympathetic nerves on glucose uptake in subcutaneous adipose tissue appears to be mediated by the α1‐adrenoceptor. Norepinephrine enhances glucose entry into adipocytes independently of insulin action. In obese subjects with insulin resistance, the α1‐adrenergic receptor may provide an important alternative pathway for glucose uptake.  相似文献   

8.
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal‐regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin‐induced increase in the phosphatidylinositol‐3,4,5‐triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin‐induced amplification of mitogenic signaling is abolished by disrupting PIP3‐mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non‐linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.  相似文献   

9.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


10.
This study investigated the role of adenosine monophosphate–activated protein kinase (AMPK) in the regulation of lipolysis in visceral (VC) and subcutaneous (SC) rat adipocytes and the molecular mechanisms involved in this process. VC (epididymal and retroperitoneal) and SC (inguinal) adipocytes were isolated from male Wistar rats (160–180 g). Adipocytes were incubated either in the absence or in the presence of the AMPK agonist 5‐aminoimidazole‐4‐carboxamide‐1‐β‐d‐ribofuranoside (AICAR, 0–500 µmol/l). AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, basal and epinephrine‐stimulated (100 nmol/l) glycerol release, and hormone‐sensitive lipase (HSL) phosphorylation and activity were determined. AICAR‐induced (500 µmol/l) AMPK activation inhibited basal glycerol release by ~42, 41, and 44% in epididymal, retroperitoneal, and inguinal adipocytes, respectively. Epinephrine‐stimulated glycerol release was almost completely prevented by AICAR treatment in adipocytes from all fat depots. The AMPK inhibitor compound C (20 µmol/l) prevented AICAR‐induced phosphorylation of AMPK and significantly increased basal (~1.3‐, 1.4‐, and 1.7‐fold) and epinephrine‐stimulated (~1.3‐, 1.2‐, 1.4‐fold) glycerol release in epididymal, retroperitoneal, and inguinal adipocytes, respectively. AICAR increased phosphorylation of HSLSer565 and inhibited epinephrine‐induced phosphorylation of HSLSer563 and HSLSer660. This was also accompanied by a 73% reduction in epinephrine‐stimulated HSL activity. Compound C prevented the phosphorylation of HSLSer565 induced by AICAR and partially prevented the inhibitory effect of this drug on basal and epinephrine‐stimulated lipolysis in adipocytes in VC and SC fat depots. In summary, despite different fat depots eliciting distinct rates of lipolysis, acute AICAR‐induced AMPK activation suppressed HSL phosphorylation/activation and exerted similar antilipolytic effects on both VC and SC adipocytes.  相似文献   

11.
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-14C]palmitate) or [3H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.  相似文献   

12.

Objective:

Interleukin‐1β (IL‐1β) has recently been implicated as a major cytokine that is involved in the pancreatic islet inflammation of type 2 diabetes mellitus. This inflammation impairs insulin secretion by inducing beta‐cell apoptosis. Recent evidence has suggested that in obesity‐induced inflammation, IL‐1β plays a key role in causing insulin resistance in peripheral tissues.

Design and Methods:

To further investigate the pathophysiological role of IL‐1β in causing insulin resistance, the inhibitory effects of IL‐1β on several insulin‐dependent metabolic processes in vitro has been neutralized by XOMA 052. The role IL‐1β plays in insulin resistance in adipose tissue was assessed using differentiated 3T3‐L1 adipocytes and several parameters involved in insulin signaling and lipid metabolism were examined.

Results and Conclusion:

IL‐1β inhibited insulin‐induced activation of Akt phosphorylation, glucose transport, and fatty acid uptake. IL‐1β also blocked insulin‐mediated downregulation of suppressor of cytokine signaling‐3 expression. Co‐preincubation of IL‐1β with XOMA 052 neutralized nearly all of these inhibitory effects in 3T3‐L1 adipocytes. These studies provide evidence, therefore, that IL‐1β is a key proinflammatory cytokine that is involved in inducing insulin resistance. These studies also suggest that the monoclonal antibody XOMA 052 may be a possible therapeutic to effectively neutralize cytokine‐mediated insulin resistance in adipose tissue.  相似文献   

13.
Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15‐lipoxygenase (12/15‐LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15‐LO in adipocytes have not been evaluated. We found that 12/15‐LO mRNA was dramatically upregulated in white epididymal adipocytes of high‐fat fed mice. 12/15‐LO was poorly expressed in 3T3‐L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15‐LO in vitro. When 3T3‐L1 adipocytes were treated with the 12/15‐LO products, 12‐hydroxyeicosatetranoic acid (12(S)‐HETE) and 12‐hydroperoxyeicosatetraenoic acid (12(S)‐HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor‐α (TNF‐α), monocyte chemoattractant protein 1 (MCP‐1), interleukin 6 (IL‐6), and IL‐12p40, was upregulated whereas anti‐inflammatory adiponectin gene expression was downregulated. 12/15‐LO products also augmented c‐Jun N‐terminal kinase 1 (JNK‐1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin‐stimulated 3T3‐L1 adipocytes exhibited decreased IRS‐1(Tyr) phosphorylation, increased IRS‐1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15‐LO product. Taken together, our data suggest that 12/15‐LO products create a proinflammatory state and impair insulin signaling in 3T3‐L1 adipocytes. Because 12/15‐LO expression is upregulated in visceral adipocytes by high‐fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15‐LO plays a role in promoting inflammation and insulin resistance associated with obesity.  相似文献   

14.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

15.

Background

In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids.

Methodology

To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP3) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells.

Results

Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin.

Conclusion

Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.  相似文献   

16.
Modulation of the expression of the protein phosphatase‐1 (PP1) glycogen‐targeting subunit PTG exerts profound effects on cellular glycogen metabolism in vitro and in vivo. PTG contains three distinct binding domains for glycogen, PP1, and a common site for glycogen synthase and phosphorylase. The impact of disrupting the PP1‐binding domain on PTG function was examined in 3T3–L1 adipocytes. A full‐length PTG mutant was generated as an adenoviral construct in which the valine and phenylalanine residues in the conserved PP1‐binding domain were mutated to alanine (PTG‐VF). Infection of fully differentiated 3T3–L1 adipocytes with the PTG‐VF adenovirus reduced glycogen stores by over 50%. In vitro, PTG‐VF competitively interfered with wild‐type PTG action, suggesting that the mutant construct acted as a dominant‐negative molecule. The reduction in cellular glycogen storage was due to a significantly increased rate of glycogen turnover. Interestingly, acute basal and insulin‐stimulated glucose uptake and glycogen synthesis rates were enhanced in PTG‐VF expressing cells vs. control 3T3–L1 adipocytes, likely as a compensatory response to the loss of glycogen stores. These results indicate that the mutation of the PP1‐binding domain on PTG resulted in the generation of a dominant‐negative molecule that impeded endogenous PTG action and reduced cellular glycogen levels, through enhancement of glycogenolysis rather than impairment of glycogen synthesis.  相似文献   

17.
18.
Ghrelin is a physiological‐active peptide with growth hormone‐releasing activity, orexigenic activity, etc. In addition, the recent study has also suggested that ghrelin possesses the pathophysiological abilities related with type 2 diabetes. However, the ghrelin‐direct‐effects implicated in type 2 diabetes on peripheral tissues have been still unclear, whereas its actions on the central nervous system (CNS) appear to induce the development of diabetes. Thus, to assess its peripheral effects correlated with diabetes, we investigated the regulatory mechanisms about adipokines, which play a central role in inducing peripheral insulin resistance, secreted from mature 3T3‐L1 adipocytes stimulated with ghrelin in vitro . The stimulation with 50 nmol/L ghrelin for 24 h resulted in the significant 1.9‐fold increase on vascular endothelial growth factor‐120 (VEGF120) releases (p < 0.01) and the 1.7‐fold on monocyte chemoattractant protein‐1 (MCP‐1) (p < 0.01) from 3T3‐L1 adipocytes, respectively, while ghrelin failed to enhance tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, IL‐10 and adiponectin secretions. In addition, Akt phosphorylation on Ser473 and c‐Jun NH2‐terminal protein kinase (JNK) phosphorylation on Thr183/Tyr185 were markedly enhanced 1.4‐fold (p < 0.01) and 1.6‐fold (p < 0.01) in the ghrelin‐stimulated adipocytes, respectively. Furthermore, the treatment with LY294002 (50 μmol/L) and Wortmannin (10nmol/L), inhibitors of phosphatidylinositol 3‐kinase (PI3K), significantly decreased the amplified VEGF120 secretion by 29% (p < 0.01) and 28% (p < 0.01) relative to the cells stimulated by ghrelin alone, respectively, whereas these inhibitors had no effects on increased MCP‐1 release. On the other hand, JNK inhibitor SP600125 (10 μmol/L) clearly reduced the increased MCP‐1, but not VEGF120, release by 35% relative to the only ghrelin‐stimulated cells (p < 0.01). In conclusion, ghrelin can enhance the secretions of proinflammatory adipokines, VEGF120 and MCP‐1, but fails to affect IL‐10 and adiponectin which are considered to be anti‐inflammatory adipokines. Moreover, this augmented VEGF120 release is invited through the activation of PI3K pathways and the MCP‐1 is through JNK pathways. Consequently, our results strongly suggest that ghrelin can induce the development of diabetes via its direct‐action in peripheral tissues as well as via in CNS. J. Cell. Physiol. 230: 199–209, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

19.
人源FGF-21在脂肪细胞糖代谢中的作用   总被引:1,自引:0,他引:1  
近年来研究发现,成纤维细胞生长因子(FGF)-21是一种新的代谢调节因子.为了深入研究人源FGF-21(hFGF-21)的生物活性,本实验利用SUMO高效表达载体,高效表达成熟的hFGF-21,并利用小鼠3T3-L1脂肪细胞检测hFGF-21的糖代谢活性.实验结果表明,hFGF-21可促进脂肪细胞的葡萄糖吸收,且葡萄糖吸收效率呈剂量依赖性.hFGF-21作用4 h即可促进脂肪细胞糖吸收,其活性可持续24 h以上.hFGF-21与胰岛素共同作用的葡萄糖吸收效果,明显优于它们的单独作用结果,说明hFGF-21与胰岛素发挥协同作用.脂肪细胞经hFGF-21预处理后,显著增加了胰岛素促进脂肪细胞吸收葡萄糖的效率,说明hFGF-21可以增加胰岛素的敏感性.本实验为临床应用hFGF-21治疗糖尿病,增加胰岛素敏感性提供了依据.  相似文献   

20.
Glucose entry into mammalian cells is facilitated by a family of glucose transport proteins known as GLUTs. Treatment of 3T3‐L1 adipocytes with the Cdk5 inhibitor roscovitine strongly inhibits insulin‐stimulated/GLUT4‐mediated glucose transport. Inhibition of glucose uptake occurs within 2–6 min of the addition of roscovitine and is slowly reversed. The roscovitine treatment interferes with neither the translocation nor the insertion of GLUT4 into the plasma membrane. These studies support recent evidence showing that insulin‐stimulated Cdk5 is implicated in the regulation of GLUT4‐mediated glucose uptake in 3T3‐L1 adipocytes. J. Cell. Physiol. 220: 238–244, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号