首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction – Dehydrocavidine is a major component of Corydalis saxicola Bunting with sedative, analgesic, anticonvulsive and antibacterial activities. Conventional methods have disadvantages in extracting, separating and purifying dehydrocavidine from C. saxicola. Hence, an efficient method should be established. Objective – To develop a suitable preparative method in order to isolate dehydrocavidine from a complex C. saxicola extract by preparative HSCCC. Methodology – The methanol extract of C. saxicola was prepared by optimised microwave‐assisted extraction (MAE). The analytical HSCCC was used for the exploration of suitable solvent systems and the preparative HSCCC was used for larger scale separation and purification. Dehydrocavidine was analysed by high‐performance liquid chromatography (HPLC) and further identified by ESI‐MS and 1H NMR. Results – The optimised MAE experimental conditions were as follows: extraction temperature, 60°C; ratio of liquid to solid, 20; extraction time, 15 min; and microwave power, 700 W. In less than 4 h, 42.1 mg of dehydrocavidine (98.9% purity) was obtained from 900 mg crude extract in a one‐step separation, using a two‐phase solvent system composed of chloroform–methanol–0.3 m hydrochloric acid (4 : 0.5 : 2, v/v/v). Conclusion – Microwave‐assisted extraction coupled with high‐speed counter‐current chromatography is a powerful tool for extraction, separation and purification of dehydrocavidine from C. saxicola. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Introduction – Commercially available herbal mixture FE, a proprietary natural health product manufactured by Flora Manufacturing and Distributing Ltd (Flora), is a unique North American traditional herbal product. FE is a chemically complex mixture of eight herbs and has not been subjected to phytochemical analysis. Objective – To develop analytical methods to undertake detailed phytochemical analyses of FE, and its eight contributing herbs, including burdock (Arctium lappa L.), sheep sorrel (Rumex acetosella L.), Turkish rhubarb (Rheum palmatum L.), slippery elm Muhl. (Ulmus rubra), watercress (Nasturtium officinale R. Br.), red clover (Trifolium pratense L.), blessed thistle (Cnicus benedictus L.) and kelp (Laminaria digitata Lmx.). Methodology – The identification was undertaken by a combination of reversed phase high performance liquid chromatography–diode array detection–atmospheric pressure chemical ionisation–mass selective detection (RP‐HPLC‐DAD‐APCI‐MSD) analysis and phenolics metabolomic library matching. Results – New separation methods facilitated the identification of 43 markers in the individual herbs which constitute FE. Sixteen markers could be identified in FE originating from four contributing herbs including four caffeoyl quinic acids, three dicaffeoyl quinic acids and two caffeic acid derivatives from A. lappa, luteolin‐7‐O‐glucoside, luteolin, five apigenin glycosides and apigenin from R. acetocella and N. officinale and sissostrin from T. pretense. A validated method for quantitative determination of three markers is reported with good intraday, interday and interoperator repeatability using a reliable alcohol based extraction technique. Conclusion – FE and its contributing herbs predominantly contain phenolics. This methodology can be applied to further develop full‐scale validation of this product. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Introduction – Ixeris sonchifolia (Bunge) Hance, a folk medicine, has been widely used in China for its anti‐inflammatory and haemostatic effects. However, the miscellaneous component composition of this herbal medicine is not well known. Objective – To develop a fast and comprehensive analytical method for the characterisation of various components from I. Sonchifolia, as a tool for the quality control of the herb and its related preparations. Methodology – Ixeris sonchifolia samples were extracted with 60% aqueous methanol, purified by solid‐phase extraction and then analysed by the combinatorial use of HPLC‐TOFMS and HPLC‐ITMS. Results – A total of six sesquiterpene lactones, six phenolic acids and seven flavonoids were identified or tentatively characterised. Five of them were reported for the first time in I. sonchifolia and, in particular, two amino acid‐sesquiterpene lactone conjugates, 11,13‐dihydro‐13‐prolyl‐ixerin Z and 11,13‐dihydro‐13‐prolyl‐ixerin Z1, that were first found in this plant source. Conclusion – A global profile of I. sonchifolia constituents was described, which could be useful for the quality control of this herb and its related preparations. The employed combination of HPLC‐TOFMS and HPLC‐ITMS could also be a promising tool for the analysis of other herbal medicines containing sesquiterpene lactones, phenolic acids or flavonoids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   

5.
Five new geminal aminocycloalkanephosphonic acids ( 4 – 8 ) containing both an aromatic ring and a cycloalkane ring were synthesized and evaluated as potential inhibitors of buckwheat phenylalanine ammonia‐lyase (PAL). Within the set of compounds which are related to 2‐aminoindane‐2‐phosphonic acid (AIP, 3 ), a known powerful inhibitor of PAL, racemic 1‐aminobenzocyclobutene‐1‐phosphonic acid ( 4 ), was six times weaker than AIP as an in vitro inhibitor of buckwheat PAL, but six times stronger than AIP as an in vivo inhibitor of phenylalanine‐derived anthocyanin synthesis in buckwheat.  相似文献   

6.
In this study, we show that 5α‐reductase derived from rat fresh liver was inhibited by certain aliphatic free fatty acids. The influences of chain length, unsaturation, oxidation, and esterification on the potency to inhibit 5α‐reductase activity were studied. Among the fatty acids we tested, inhibitory saturated fatty acids had C12–C16 chains, and the presence of a C?C bond enhanced the inhibitory activity. Esterification and hydroxy compounds were totally inactive. Finally, we tested the prostate cancer cell proliferation effect of free fatty acids. In keeping with the results of the 5α‐reductase assay, saturated fatty acids with a C12 chain (lauric acid) and unsaturated fatty acids (oleic acid and α‐linolenic acid) showed a proliferation inhibitory effect on lymph‐node carcinoma of the prostate (LNCaP) cells. At the same time, the testosterone‐induced prostate‐specific antigen (PSA) mRNA expression was down‐regulated. These results suggested that fatty acids with 5α‐reductase inhibitory activity block the conversion of testosterone to 5α‐dihydrotestosterone (DHT) and then inhibit the proliferation of prostate cancer cells.  相似文献   

7.
The essential‐oil and fatty‐acid composition of the aerial parts of Ficaria kochii (Ledeb .) Iranshahr & Rech .f. native to Iran, and the antioxidant activity of various extracts of this plant were examined. The study by GC‐FID and GC/MS analysis of the essential oil resulted in the identification of 61 compounds, representing 86.01% of the total oil composition. Phytol (10.49%), farnesol (7.72%), methyl linoleate (5.57%), and α‐farnesene (4.96%) were the main components. The fatty‐acid composition of the aerial parts of F. kochii was also analyzed by GC/MS. The major components were palmitic acid (25.9%), linolenic acid (25.3%), and linoleic acid (17.5%). Polyunsaturated fatty acids (PUFAs) were found in higher amounts than saturated fatty acids. The possible antioxidant activity of various extracts (prepared by using solvents with different polarity) of the F. kochii aerial parts was evaluated by screening for their 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical‐scavenging activity, FeIII‐reducing power, total antioxidant activity, and inhibitory activity in the linoleic acid‐peroxidation system. H2O proved to be the most efficient solvent for the extraction of antioxidants, as the H2O extract contained the highest amount of phenolic compounds (2.78±0.23 GAE/g dry matter) and also exhibited the strongest antioxidant capacity in all the assays used. The results of the present investigation demonstrated that the aerial parts of F. kochii can be used as natural and safe nutrition supplement in place of synthetic ones.  相似文献   

8.
Introduction – Isodon nervosa is a commonly used traditional Chinese medicine including diterpenoids, phenolic acids, triterpenoids and volatile oil. Qualitative and quantitative analysis of multi‐components is important for its quality control. Objective – To establish a liquid chromatography–electrospray ionisation–mass spectrometry method for simultaneous analysis of 20 bioactive constituents of Isodon nervosa in different places of China and different parts of this herb. Methodology – The optimal chromatographic conditions were achieved on a C18 column (250 × 4.6 mm, 5 µm) with with linear gradient elution with 0.1% aqueous formic acid : methanol containing 0.1% formic acid at a flow‐rate of 0.7 mL/min in 15 min. The identification and quantification of those analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple‐reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the method was carried out (linearity, precision, accuracy, limit of detection and limit of quantification). Results – The results indicated that the method was simple, rapid, specific and reliable. The proposed method was successfully applied for the qualitative and quantitative analysis of 20 chemical compositions in Isodon nervosa samples. Conclusion – Twenty chemical compositions in 21 batches of wild and cultivated Isodon nervosa samples from different sources had great variation in the contents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Introduction – Artemisia rupestris L. is a well‐known traditional Chinese medicinal plant in Xinjiang. Rupestonic acid is the main active ingredient of A. rupestris L., and has been chosen as a ‘marker compound’ for the chemical evaluation or quality control of A. rupestris L. and its products. Although HSCCC separation method was developed before, the separation was performed with two steps using the same solvent system, which were time‐consuming and waste of the solvents. Objective – To develop a simple HSCCC method for the separation and purification of rupestonic acid in a single run. Methodology – The measurement of partition coefficient (K) was introduced to select the two‐phase solvent system. The simple HSCCC method was established according to the selected solvent system for separation and purification of rupestonic acid. The purity of target compound was test by HPLC and the structure was identified by MS, 1H NMR and 13C NMR. Results – A total of 72.3 mg of rupestonic acid and 53.5 mg of chrysosptertin B with over 95% purity were yielded from 500 mg extracts of Artemisia rupestris L. in one‐step separation. Conclusion – The rupestonic acid was separated in a single run by HSCCC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Introduction – Recently, there have been growing attention on the modification and optimisation of new extraction and quantification methods, caused by the lack of environmentally friendly methodologies for the extraction of phytochemicals from complex matrices. In the case of pharmaceutical compounds, not only the extraction procedure but also the analysis method should be efficient, precise, fast and easy. Objectives – The essential pharmaceutical characteristics and trace concentration of withanolides led us to modify and optimise the previously reported extraction and quantification procedure for withaferin A (WA) as a candidate for withanolides. Matrial and methods – The WA from the air‐dried aerial part of Withania somnifera Dunal. was extracted using a microwave‐assisted extraction (MAE) technique. Four variables affecting the extraction procedure were optimised using the central composite design approach. The method of high‐performance thin‐layer chromatography assay was validated and applied for the quantification of each experiment. Results – The optimum values of factors were: extraction time (150 s), extraction temperature (68°C) and 17 mL of methanol : water in the ratio 25 : 75 as extracting solvent. The solvent system consisted of ethyl acetate : toluene : formic acid : 2‐propanol (7.0 : 2.0 : 0.5 : 0.5, v/v/v/v), and densitometric scanning at 220 nm was applied for the analysis. The dynamic linear range, LOD, LOQ and recovery with the inter‐day, and intra‐day RSDs of the developed method indicated the validity of the method. Conclusion – A pressurised MAE method for extracting WA from the plant's aerial part was optimised using factorial‐based design. The net effect of time, temperature, solvent volume and its ratio suggests that the yield of WA increases until each factor reaches its optimum value, and decreases with further increase in temperature or solvent ratio. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Rice seedling blight is an important disease caused by a complex of fungi that include Fusarium, Rhizopus, Pythium, and Trichoderma species. A modified MIDI method was used for extraction of fatty acids from these causal pathogens, and fatty acid methyl ester (FAME) profiles were characterized. Factors that might affect fatty acid production, such as period of culture and saponification in extraction, were also evaluated. A total of 14 fatty acids were detected, and FAME profiles showed quantitative and qualitative variations by discriminant analysis and principal component analysis. Genus-specific FAME profiles consisting of the types of fatty acid produced and remarkable components of individual fatty acids were observed. The possibility of application as chemotaxonomic methods based on the FAME profiles for diagnosis of the rice seedling blight complex is also discussed.  相似文献   

12.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

13.
Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean‐based protein and a high Omega‐3 fatty acid soya bean oil, enriched with alpha‐linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega‐3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity‐preserved soya bean‐based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value‐added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described.  相似文献   

14.
The fat‐1 gene, derived from Caenorhabditis elegans, encodes for a fatty acid n‐3 desaturase. In order to study the potential metabolic benefits of n‐3 fatty acids, independent of dietary fatty acids, we developed seven lines of fat‐1 transgenic mice (C57/BL6) controlled by the regulatory sequences of the adipocyte protein‐2 (aP2) gene for adipocyte‐specific expression (AP‐lines). We were unable to obtain homozygous fat‐1 transgenic offspring from the two highest expressing lines, suggesting that excessive expression of this enzyme may be lethal during gestation. Serum fatty acid analysis of fat‐1 transgenic mice (AP‐3) fed a high n‐6 unsaturated fat (HUSF) diet had an n‐6/n‐3 fatty acid ratio reduced by 23% (P < 0.025) and the n‐3 fatty acid eicosapentaenoic acid (EPA) concentration increased by 61% (P < 0.020). Docosahexaenoic acid (DHA) was increased by 19% (P < 0.015) in white adipose tissue. Male AP‐3‐fat‐1 line of mice had improved glucose tolerance and reduced body weight with no change in insulin sensitivity when challenged with a high‐carbohydrate (HC) diet. In contrast, the female AP‐3 mice had reduced glucose tolerance and no change in insulin sensitivity or body weight. These findings indicate that male transgenic fat‐1 mice have improved glucose tolerance likely due to increased insulin secretion while female fat‐1 mice have reduced glucose tolerance compared to wild‐type mice. Finally the inability of fat‐1 transgenic mice to generate homozygous offspring suggests that prolonged exposure to increased concentrations of n‐3 fatty acids may be detrimental to reproduction. J. Cell. Biochem. 107: 809–817, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Introduction – Plant extracts are usually complex mixtures of various polarity compounds and their study often includes a purification step, such as solid‐phase extraction (SPE), to isolate interest compounds prior analytical investigations. Molecularly imprinted polymers (MIPs) are a new promising type of SPE material which offer tailor‐made selectivity for the extraction of trace active components in complex matrices. Numerous specific cavities that are sterically and chemically complementary of the target molecules, are formed in imprinted polymers. A molecularly imprinted polymer (MIP) was synthesised in order to trap a specific class of triterpene, including betulin and betulinic acid from a methanolic extract of plane bark. Methodology – Imprinted polymers were synthesised by thermal polymerisation of betulin as template, methacrylic acid (MAA) or acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate as crosslinking agent and chloroform as porogen. Afterwards, MAA‐ and AA‐MIPs were compared with their non‐imprinted polymers (NIPs) in order to assess the selectivity vs betulin and its derivatives. Recovered triterpenes were analysed by HPLC during MIP‐SPE protocol. Results – After SPE optimisation, the MAA‐imprinted polymer exhibited highest selectivity and recovery (better than 70%) for betulin and best affinity for its structural analogues. Thus, a selective washing step (chloroform, acetonitrile) removed unwanted matrix compounds (fatty acids) from the SPE cartridge. The elution solvent was methanol. Finally, the MAA‐MIP was applied to fractionate a plane bark methanolic extract containing betulin and betulinic acid. Conclusion – This study demonstrated the possibility of direct extraction of betulin and its structural analogues from plant extracts by MIP technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
Biofuel from fatty acids with chain lengths of 8–15 (C8–C15) have properties similar to those of conventional diesel and jet fuels, thus, can save time and reduce costs for the refurbishment of engines and maintenance of oiling facilities. Most oil‐producing algae yield C16–C18 fatty acids; however, the manipulation of algae using genetic engineering is a promising approach to obtain C8–C15 fatty acids. The introduction of a medium‐chain‐specific thioesterase (TE) is expected to effectively alter algae to produce medium‐chain fatty acids (MCFAs). TE is the main determinant of fatty acid chain length as it releases fatty acids from the acyl carrier protein (ACP) in the fatty acid elongation cycle. In a previous study, the introduction of heterologous C8–C12‐specific TEs into Chlamydomonas reinhardtii did not increase the yield of MCFAs. This effect was attributed to a low affinity of the heterologous TEs to C. reinhardtii ACP. Therefore, we introduced both the C10–C14‐specific TE gene and the ACP gene from the land plant Cuphea lanceolata into C. reinhardtii. We measured free fatty acids (FFAs) and triacylglycerols (TAGs) in the transformants using liquid chromatography–mass spectrometry. The production of C12:0 and C14:0, chain length 12 and 14 without unsaturation, FFAs was not significantly increased in any of the tested strains. However, we found a slight but significant increase in TAG‐containing MCFAs in both TE only and TE–ACP transformants. The increased production rate of C14:0‐containing TAGs ranged from 1.25‐ to 1.58‐fold, indicating the ability of medium‐chain‐specific TE to increase MCFAs. These results suggest that the selection of specific TEs is important when modifying eukaryotic algae to produce MCFAs.  相似文献   

19.
Physiological effects of sublethal doses of atrazine on Lemna minor. VII. 1,2-[14C] acetate incorporation into the groups of lipids and their fatty acids. The lipids and the fatty acids of ten-day old duckweed (Lemna minor L.), cultivated aseptically in mineral solution containing sublethal concentrations of 0,10 and 0,50 ppm (0.46 and 2.3 μM, respectively) of atrazine, were analyzed by thin-layer chromatography and gas-liquid radiochromatography after 1,2-[14C] acetate feeding. Sublethal concentrations of atrazine increased the incorporation of radioactivity in total lipids, diacylgalactosylglycerol (DGG), diacyldigalactosylglycerol (DDG), sul-folipids (SL), phosphatidylglycerol (PG), diacylglycerol (DAG) and triacylglycerol + steroll esters (TAG+SE). The incorporation of acetate-1,2-[14C] decreased in phos-phatidylcholine (PC) and in phosphatidylethanolamine (PE) in the presence of atrazine. The radioactivity increased in total Transic-hexadecenoic, linoleic and α -linolenic acids while it decreased in the other fatty acids. This indicates that the sublethal concentrations of atrazine stimulate the desaturation of fatty acids of L. minor. The radioactivity was strongly incorporated in the α -linolenic acid of DGG in the presence of atrazine. The specific radioactivity of α-linolenic acid was greater in DAG than in PG > TAG + SE > PC > PE > DGG > SL > DDG and it increased in all groupd of lipids analyzed under the influence of sublethal doses of atrazine. The labelling of Translchexadecenoic acid of PG and its specific radioactivity increased in the presence of atrazine. These changes suggest that the sublethal concentrations of atrazine stimulate especially the lipid metabolism of the chloroplasts of L. minor and they could explain the increase in the number of grana per chloroplast in treated L. minor. The results are discussed in relation to the biosynthesis of galactolipids.  相似文献   

20.
Objective – To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Methodology – Several extraction parameters such as microwave power, extraction time, solvent composition, pre‐leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction Results – The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre‐leaching time and 25 : 1 (mL/g) as the solvent‐to‐material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism Conclusion – Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号