首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variance in reproductive success is a major determinant of the degree of genetic drift in a population. While many plants and animals exhibit high variance in their number of progeny, far less is known about these distributions for microorganisms. Here, we used a strain barcoding approach to quantify variability in offspring number among replicate bacterial populations and developed a Bayesian method to infer the distribution of descendants from this variability. We applied our approach to measure the offspring distributions for five strains of bacteria from the genus Streptomyces after germination and growth in a homogenous laboratory environment. The distributions of descendants were heavy‐tailed, with a few cells effectively ‘winning the jackpot’ to become a disproportionately large fraction of the population. This extreme variability in reproductive success largely traced back to initial populations of spores stochastically exiting dormancy, which provided early‐germinating spores with an exponential advantage. In simulations with multiple dormancy cycles, heavy‐tailed distributions of descendants decreased the effective population size by many orders of magnitude and led to allele dynamics differing substantially from classical population genetics models with matching effective population size. Collectively, these results demonstrate that extreme variability in reproductive success can occur even in growth conditions that are far more homogeneous than the natural environment. Thus, extreme variability in reproductive success might be an important factor shaping microbial population dynamics with implications for predicting the fate of beneficial mutations, interpreting sequence variability within populations and explaining variability in infection outcomes across patients.  相似文献   

2.
The effects of climate change—such as increased temperature variability and novel predators—rarely happen in isolation, but it is unclear how organisms cope with multiple stressors simultaneously. To explore this, we grew replicate Paramecium caudatum populations in either constant or variable temperatures and exposed half to predation. We then fit thermal performance curves (TPCs) of intrinsic growth rate (rmax) for each replicate population (N = 12) across seven temperatures (10°C–38°C). TPCs of P. caudatum exposed to both temperature variability and predation responded only to one or the other (but not both), resulting in unpredictable outcomes. These changes in TPCs were accompanied by changes in cell morphology. Although cell volume was conserved across treatments, cells became narrower in response to temperature variability and rounder in response to predation. Our findings suggest that predation and temperature variability produce conflicting pressures on both thermal performance and cell morphology. Lastly, we found a strong correlation between changes in cell morphology and TPC parameters in response to predation, suggesting that responses to opposing selective pressures could be constrained by trade‐offs. Our results shed new light on how environmental and ecological pressures interact to elicit changes in characteristics at both the individual and population levels. We further suggest that morphological responses to interactive environmental forces may modulate population‐level responses, making prediction of long‐term responses to environmental change challenging.  相似文献   

3.
A model-based gating strategy is developed for sorting cells and analyzing populations of single cells. The strategy, named CCAST, for Clustering, Classification and Sorting Tree, identifies a gating strategy for isolating homogeneous subpopulations from a heterogeneous population of single cells using a data-derived decision tree representation that can be applied to cell sorting. Because CCAST does not rely on expert knowledge, it removes human bias and variability when determining the gating strategy. It combines any clustering algorithm with silhouette measures to identify underlying homogeneous subpopulations, then applies recursive partitioning techniques to generate a decision tree that defines the gating strategy. CCAST produces an optimal strategy for cell sorting by automating the selection of gating markers, the corresponding gating thresholds and gating sequence; all of these parameters are typically manually defined. Even though CCAST is optimized for cell sorting, it can be applied for the identification and analysis of homogeneous subpopulations among heterogeneous single cell data. We apply CCAST on single cell data from both breast cancer cell lines and normal human bone marrow. On the SUM159 breast cancer cell line data, CCAST indicates at least five distinct cell states based on two surface markers (CD24 and EPCAM) and provides a gating sorting strategy that produces more homogeneous subpopulations than previously reported. When applied to normal bone marrow data, CCAST reveals an efficient strategy for gating T-cells without prior knowledge of the major T-cell subtypes and the markers that best define them. On the normal bone marrow data, CCAST also reveals two major mature B-cell subtypes, namely CD123+ and CD123- cells, which were not revealed by manual gating but show distinct intracellular signaling responses. More generally, the CCAST framework could be used on other biological and non-biological high dimensional data types that are mixtures of unknown homogeneous subpopulations.  相似文献   

4.
Ion channels exhibit stochastic conformational changes determining their gating behavior. In addition, the process of protein turnover leads to a natural variability of the number of membrane and gap junctional channels. Nevertheless, in computational models, these two aspects are scarcely considered and their impacts are largely unknown. We investigated the effects of stochastic current fluctuations and channel distributions on action potential duration (APD), intercellular conduction delays (ICDs) and conduction blocks using a modified ventricular cell model (Rudy et al.) with Markovian formulations of the principal ion currents (to simulate their stochastic open-close gating behavior) and with channel counts drawn from Poisson distributions (to simulate their natural variability). In single cells, APD variability (coefficient of variation: 1.6% at BCL=1000 ms) was essentially caused by stochastic channel gating of IKs, persistent INa and ICa,L. In cell strands, ICD variability induced by stochastic channel gating and Poissonian channel distributions was low under normal conditions. Nonetheless, at low intercellular coupling levels, Poissonian gap junctional channel distribution resulted in a large ICD variability (coefficient of variation >20%), highly heterogeneous conduction patterns and conduction blocks. Therefore, the stochastic behavior of current fluctuations and channel distributions can contribute to the heterogeneity of conduction patterns and to conduction block, as observed previously in experiments in cardiac tissue with altered intercellular coupling.  相似文献   

5.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

6.
Incorporating genomic data sets into landscape genetic analyses allows for powerful insights into population genetics, explicitly geographical correlates of selection, and morphological diversification of organisms across the geographical template. Here, we utilize an integrative approach to examine gene flow and detect selection, and we relate these processes to genetic and phenotypic population differentiation across South‐East Asia in the common sun skink, Eutropis multifasciata. We quantify the relative effects of geographic and ecological isolation in this system and find elevated genetic differentiation between populations from island archipelagos compared to those on the adjacent South‐East Asian continent, which is consistent with expectations concerning landscape fragmentation in island archipelagos. We also identify a pattern of isolation by distance, but find no substantial effect of ecological/environmental variables on genetic differentiation. To assess whether morphological conservatism in skinks may result from stabilizing selection on morphological traits, we perform FSTPST comparisons, but observe that results are highly dependent on the method of comparison. Taken together, this work provides novel insights into the manner by which micro‐evolutionary processes may impact macro‐evolutionary scale biodiversity patterns across diverse landscapes, and provide genomewide confirmation of classic predictions from biogeographical and landscape ecological theory.  相似文献   

7.
The Drosophila light-activated channel TRP is the founding member of a large and diverse family of channel proteins that is conserved throughout evolution. In spite of much progress, the gating mechanism of TRP channels is still unknown. However, recent studies have shown multi-faceted functions of the Drosophila light-sensitive TRP channel that may shed light on TRP gating. Accordingly, metabolic stress, which leads to depletion of cellular ATP, reversibly activates the Drosophila TRP and TRPL channels in the dark in a constitutive manner. In several Drosophila mutants, constitutive activity of TRP channels lead to a rapid retinal degeneration in the dark, while genetic elimination of TRP protects the cells from degeneration. Additional studies have shown that TRPL translocates in a light-dependent manner between the signaling membranes and the cell body. This light-activated translocation is accompanied by reversible morphological changes leading to partial and reversible collapse of the microvillar signaling membranes into the cytosol, which allows turnover of signaling molecules. These morphological changes are also blocked by genetic elimination of TRP channels. The link of TRP gating to the metabolic state and maintenance of cells makes cells expressing TRP extremely vulnerable to metabolic stress via a mechanism that may underlie retinal degeneration and neuronal cell death upon malfunction.  相似文献   

8.
The taxonomy of Portulaca oleracea has been considered as being complex since the aggregate is composed of many subspecies or a group of micro-species based on seed-coat characters, seed size, and chromosome number. In order to enlarge the background of the extent of genetic variability between and within Tunisian P. oleracea accessions, a combined morphological and molecular approach was adapted, in the present survey. The morphological analyses of the spontaneous Tunis population display high intra population variability characterized by two distinct morphotypes corresponding to the botanical forms (wild and cultivated plant). Furthermore, the molecular approach based on sequences data related to chloroplastic and ribosomal DNA, was used to understand this variability. The obtained results highlighted the greater molecular variability of this plant and allowed to segregate between morphotypes and genotypes of Portulaca. Mostly, this work shows the important contribution of DNA barcoding approach in resolving low-level-taxonomy problems to distinguish between natural populations and varieties.  相似文献   

9.
The present study aimed to infer evolutionary scenarios for Vipera latastei and Vipera monticola in the Iberian Peninsula and the Maghreb through the identification of spatial patterns in morphological character variation and biogeographic patterns in morphological variability distribution. Ten morphological traits from 630 vipers were analysed with geostatistic and ecological niche modelling in a geographical information system. Interpolation by Kriging was used to generate surfaces of morphological variation, which were combined with spatial principal components analysis (SPCA). Putative morphological differentiated groups generated by SPCA maps were tested with discriminant function analysis (DFA). Maximum entropy modelling and nine environmental variables were used to identify factors limiting the distribution of groups and areas for their potential occurrence. Groups supported by DFA were: Western Iberia, Eastern Iberia, Rif plus Middle Atlas, Algeria, and High Atlas. Their distribution is influenced by common environmental factors such as precipitation. Areas of probable sympatry between Iberian groups matched the morphological clines observed by geostatistics tools. Geographic variation patterns in V. latastei‐monticola are probably due to vicariant separation of Iberian and African populations during the opening of the Strait of Gibraltar, and population refugia during the Quaternary glaciations with secondary contact. The taxonomic status of northern Morocco and Algerian groups should be further investigated. We conclude that geostatistics and niche‐modelling tools are adequate to infer morphological variability across wide geographic ranges of species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 790–806.  相似文献   

10.
Most cells experience an active and variable fluid environment, in which hydrodynamic forces can affect aspects of cell physiology including gene regulation, growth, nutrient uptake, and viability. The present study describes a rapid yet reversible change in cell morphology of the marine dinoflagellate Ceratocorys horrida Stein, due to fluid motion. Cells cultured under still conditions possess six large spines, each almost one cell diameter in length. When gently agitated on an orbital shaker under conditions simulating fluid motion at the sea surface due to light wind or surface chop, as determined from digital particle imaging velocimetry, population growth was inhibited and a short‐spined cell type appeared that possessed a 49% mean decrease in spine length and a 53% mean decrease in cell volume. The reduction in cell size appeared to result primarily from a 39% mean decrease in vacuole size. Short‐spined cells were first observed after 1 h of agitation at 20°C; after 8 to 12 d of continuous agitation, long‐spined cells were no longer present. The morphological change was completely reversible; in previously agitated populations devoid of long‐spined cells, cells began to revert to the long‐spined morphology within 1 d after return to still conditions. During morphological reversal, spines on isolated cells grew up to 10 μm·d?1. In 30 d the population morphology had returned to original proportions, even though the overall population growth was zero during this time. The reversal did not occur as a result of cell division, because single‐cell studies confirmed that the change occurred in the absence of cell division and much faster than the 16‐d doubling time. The threshold level of agitation causing morphology change in C. horrida was too low to inhibit population growth in the shear‐sensitive dinoflagellate Lingulodinium polyedrum. At the highest level of agitation tested, there was negative population growth in C. horrida cultures, indicating that fluid motion caused cell mortality. Small, spineless cells constituted a small percentage of the population under all conditions. Although their abundance did not change, single‐cell studies and morphological characteristics suggest that the spineless cells can rapidly transform to and from other cell types. The sinking rate of individual long‐spined cells in still conditions was significantly less than that of short‐spined cells, even though the former are larger and have a higher cell density. These measurements demonstrate that the long spines of C. horrida reduce cell sinking. Shorter spines and reduced swimming would allow cells to sink away from turbulent surface conditions more rapidly. The ecological importance of the morphological change may be to avoid conditions that inhibit population growth and potentially cause cell damage.  相似文献   

11.
Cells react to their microenvironment by integrating external stimuli into phenotypic decisions via an intracellular signaling network. To analyze the interplay of environment, local neighborhood, and internal cell state effects on phenotypic variability, we developed an experimental approach that enables multiplexed mass cytometric imaging analysis of up to 240 pooled spheroid microtissues. We quantified the contributions of environment, neighborhood, and intracellular state to marker variability in single cells of the spheroids. A linear model explained on average more than half of the variability of 34 markers across four cell lines and six growth conditions. The contributions of cell‐intrinsic and environmental factors to marker variability are hierarchically interdependent, a finding that we propose has general implications for systems‐level studies of single‐cell phenotypic variability. By the overexpression of 51 signaling protein constructs in subsets of cells, we also identified proteins that have cell‐intrinsic and cell‐extrinsic effects. Our study deconvolves factors influencing cellular phenotype in a 3D tissue and provides a scalable experimental system, analytical principles, and rich multiplexed imaging datasets for future studies.  相似文献   

12.
Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single‐cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell‐to‐cell variability resulted in a loss of correlation among the expression of several senescence‐associated genes. Many genes encoding senescence‐associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo.  相似文献   

13.
Understanding how environmental fluctuations affect the stability of populations and communities is complex, for example, because direct effects of environmental variability on populations may be modified and propagated across communities by species interactions. One way to explore and further understand these complexities is via a factorial manipulation of community composition and environmental conditions. Using laboratory based aquatic microcosms we manipulated environmental fluctuation by creating two environments; one with variable light and one with constant light. Within these environments, community composition was manipulated by constructing communities from all possible combinations of three species that vary in their reliance on light for growth (an autotroph: a diatom completely reliant on light, a heterotroph: a Paramecium species not reliant on light, and a mixotroph: a Paramecium species somewhat reliant on light). Community composition was predicted to affect populations and communities by introducing and altering competitive interactions between species and affecting the degree of niche differentiation between species. We found that population stability was predominantly influenced by an interaction between community composition and environmental variability, whereby the effect of environmental variability synergistically combined with effects of community composition to reduce population stability. Covariance of populations was determined by an interaction between community composition and environmental variability, though this did not result from the effect of niche differentiation between species. Species interactions drove correlations between population biomass and the environment which otherwise did not exist. Our results demonstrate the complex and interrelated effects of abiotic and biotic factors on population and community stability, and suggest the need to consider aspects of community composition when predicting the impact of environmental fluctuations.  相似文献   

14.
Freshwater mussels (Unionoida) show high intraspecific morphological variability, and some shell morphological traits are believed to be associated with habitat conditions. It is not known whether and which of these ecophenotypic differences reflect underlying genetic differentiation or are the result of phenotypic plasticity. Using 103 amplified fragment length polymorphism (AFLP) markers, we studied population genetics of three paired Unio pictorum populations sampled from two different habitat types (marina and river) along the River Thames. We found genetic differences along the Thames which were consistent with a pattern of isolation by distance and probably reflect limited dispersal via host fish species upon which unionoid larvae are obligate parasites. No consistent genetic differences were found between the two different habitat types suggesting that morphological differences in the degree of shell elongation and the shape of dorso-posterior margin are caused by phenotypic plasticity. Our study provides the first good evidence for phenotypic plasticity of shell shape in a European unionoid and illustrates the need to include genetic data in order properly to interpret geographic patterns of morphological variation.  相似文献   

15.
Using a population density approach we study the dynamics of two interacting collections of integrate-and-fire-or-burst (IFB) neurons representing thalamocortical (TC) cells from the dorsal lateral geniculate nucleus (dLGN) and thalamic reticular (RE) cells from the perigeniculate nucleus (PGN). Each population of neurons is described by a multivariate probability density function that satisfies a conservation equation with appropriately defined probability fluxes and boundary conditions. The state variables of each neuron are the membrane potential and the inactivation gating variable of the low-threshold Ca2+ current IT. The synaptic coupling of the populations and external excitatory drive are modeled by instantaneous jumps in the membrane potential of postsynaptic neurons. The population density model is validated by comparing its response to time-varying retinal input to Monte Carlo simulations of the corresponding IFB network composed of 100 to 1000 cells per population. In the absence of retinal input, the population density model exhibits rhythmic bursting similar to the 7 to 14 Hz oscillations associated with slow wave sleep that require feedback inhibition from RE to TC cells. When the TC and RE cell potassium leakage conductances are adjusted to represent cholingergic neuromodulation and arousal of the network, rhythmic bursting of the probability density model may either persists or be eliminated depending on the number of excitatory (TC to RE) or inhibitory (RE to TC) connections made by each presynaptic cell. When the probability density model is stimulated with constant retinal input (10–100 spikes/sec), a wide range of responses are observed depending on cellular parameters and network connectivity. These include asynchronous burst and tonic spikes, sleep spindle-like rhythmic bursting, and oscillations in population firing rate that are distinguishable from sleep spindles due to their amplitude, frequency, or the presence of tonic spikes. In this context of dLGN/PGN network modeling, we find the population density approach using 2,500 mesh points and resolving membrane voltage to 0.7 mV is over 30 times more efficient than 1000-cell Monte Carlo simulations. Action Editor: David Golomb  相似文献   

16.
Robust quantitative estimation of average whole cell mitochondrial dysfunction is a useful tool for assessing sensitivity to apoptotic stimuli induced either by novel agents, or following manipulation of apoptotic threshold by pharmacological or functional genomics approaches. We have mathematically modelled the kinetics of whole cell mitochondrial membrane potential depolarisation within a population of cells as a Bernouli transition. An exponential distribution enables the median latency preceding mitochondrial membrane potential disispation to be derived. The kinetic model can be fitted to in vitro single cell resolution data derived from kinetic flow cytometric studies by non-linear regression. We propose that kinetic determination of cumulative frequency distibutions provides a useful approach for estimating apoptosis sensitivity across cell populations over short time-frames.  相似文献   

17.
Biological cells in a population are variable in practically every property. Much is known about how variability of single cells is reflected in the statistical properties of infinitely large populations; however, many biologically relevant situations entail finite times and intermediate-sized populations. The statistical properties of an ensemble of finite populations then come into focus, raising questions concerning inter-population variability and dependence on initial conditions. Recent technologies of microfluidic and microdroplet-based population growth realize these situations and make them immediately relevant for experiments and biotechnological application. We here study the statistical properties, arising from metabolic variability of single cells, in an ensemble of micro-populations grown to saturation in a finite environment such as a micro-droplet. We develop a discrete stochastic model for this growth process, describing the possible histories as a random walk in a phenotypic space with an absorbing boundary. Using a mapping to Polya’s Urn, a classic problem of probability theory, we find that distributions approach a limiting inoculum-dependent form after a large number of divisions. Thus, population size and structure are random variables whose mean, variance and in general their distribution can reflect initial conditions after many generations of growth. Implications of our results to experiments and to biotechnology are discussed.  相似文献   

18.
19.
The adaptation of Acholeplasma laidlawii to conditions unfavorable for growth has been found to be accompanied by cell transformation into special morphological structures known as ultramicroforms (nanocells). The ratio of the cells of the two morphological types in the population depended on the growth conditions. Nanocells retained viability for a long time under conditions unfavorable for growth and showed resistance to stressors. Reduction in the cell size occurred due to unequal division, which involved the loss of cytoplasmic material. A. laidlawii ultramicroforms (nanocells) were able to restore proliferative activity and to revert to their initial vegetative form; they measured less than 0.2 µm and are the smallest cells known at present. Nanocells formed in vitro under exposure to abiogenic stressors may correspond to the A. laidlawii minibodies observed in infected plants upon exposure to biogenic stressors. The transformation of A. laidlawii cells into ultramicroforms was accompanied by condensation of the nucleoid, a change in the polypeptide spectrum, and a change in the availability of rRNA operons for in vitro amplification. All these changes are indicative of reorganization of the genetic and metabolic systems of mycoplasmas.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 498–504.Original Russian Text Copyright © 2005 by Chernov, Mukhametshina, Gogolev, Abdrakhimov, Chernova.  相似文献   

20.
The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a “zeitgeber”, or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号