首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological traits of Iris section Oncocyclus (Siems.) Baker in the southern Levant (Israel, Jordan, The Palestinian Authority and Sinai/Egypt) were analysed in order to clarify taxonomic relationships among taxa and the validity of diagnostic characters. Floral and vegetative characters were measured in 42 populations belonging to nine species during the peak of the flowering season in 1998–2000. Pearson's Coefficient of Racial Likelihood (CRL) was used to calculate morphological distances between populations. Twelve of the measured populations, distributed along the north-south aridity gradient in Israel, were further explored for morphological changes along the gradient. Cluster analysis revealed two major clusters: the first includes most of the dark-coloured Iris populations, with populations of I. petrana Dinsmore and I. mariae W. Barbey forming a subcluster; the second consists of all the light-coloured populations but also some dark-coloured populations. Pearson's CRL and geographical distance were significantly correlated among the dark-coloured populations. Along the geographical gradient, flower, stem and leaf size traits decrease towards the south, probably as an adaptation to aridity. This suggests that natural selection promoted the differences between populations. Almost no discrete phenotypic groups exist within the Oncocyclus species of the southern Levant except for variation in the floral colours. Most of the suggested diagnostic characters proved unreliable in that they varied continuously across populations. The taxonomical difficulties encountered in this study reflect the special evolutionary state of the Oncocyclus irises as a group in the course of speciation.  © 2002 The Linnean Society of London. Botanical Journal of the Linnean Society , 2002, 139 , 369–382.  相似文献   

2.
Cornman RS  Arnold ML 《Molecular ecology》2007,16(21):4585-4598
We investigated the phylogeography of Iris missouriensis (Iridaceae), which is widely distributed in western North America. We utilized transposon display and DNA sequencing to quantify nuclear and chloroplast genetic structure. Our objectives were (i) to characterize the geographic structure of genetic variation throughout the species range, (ii) to test whether both margins of the range show reduced genetic diversity as predicted by north-south expansion and contraction associated with climate change, and (iii) to determine whether the subspecies Iris missouriensis ssp. longipetala is genetically distinct. We found that genetic diversity was significantly lower in the northern part of the range but was not significantly different between the central and southern regions, indicating greater stability of the southern margin vs. the northern. Among-population differentiation was high (PhiPT=0.52). The largest divisions in each marker set were concordant and separated the southern Rocky Mountains and Basin and Range provinces from the remainder of the range. The boundaries of this phylogeographic break do not coincide with gaps in present-day distributions or phylogeographic breaks identified in other species, and may indicate a measure of reproductive isolation. Consistent with current treatments, we did not find support for the taxonomic placement of I. missourienis ssp. longipetala as a distinct species. Although transposon display has been used to investigate relationships among crop accessions and their wild relatives, to our knowledge, this is the first use of these markers for population-level phylogeography of a nonmodel species and further demonstrates their utility in species recalcitrant to amplified fragment length polymorphism protocols.  相似文献   

3.
Phylogenies of Old WorldTrifolium species were constructed using nucleotide sequence data of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and chloroplast DNA restriction site data from PCR-amplified genes and genic regions (rbcL,trnK, andrpoC1–C2). Biogeography, morphological evolution, and the existing classification forTrifolium were examined. The genusTrifolium is strongly supported as monophyletic, however, only one small section (Chronosemium) is monophyletic, although the data are in conflict regarding its placement. The two largest sections of the genus, Sects.Lotoidea andTrifolium, are not supported as monophyletic, as currently circumscribed. Many members of Sect.Lotoidea are basal within the genus, supporting previously-proposed hypotheses concerning plesiomorphic morphological characters and a Mediterranean-Mideast biogeographic origin of the genus.  相似文献   

4.
Phylogenetic analyses of four plastid DNA regions, the rbcL exon, trnL intron, trnL-trnF intergenic spacer, and rps16 intron from each of 73 species in the African genus Moraea (Iridaceae: Irideae) including accessions of all major species clusters in the genus, show Moraea to be paraphyletic when Barnardiella, Galaxia, Hexaglottis, Homeria (all southern African), and Gynandriris (Eurasian as well) were recognized as separate genera. There are several small, isolated species clusters at the basal nodes of the tree that are all restricted to the winter-rainfall zone of southern Africa (the Greater Cape floral kingdom) and a few, highly derived, large species groups that have radiated extensively within the winter-rainfall zone. Mapping of floral traits shows that an Iris-type flower is ancestral in Moraea. Floral changes are associated with shifts in pollination systems, either from passive pollen deposition on long-tongued bees foraging for nectar to active pollen collection by female bees foraging for pollen, fly, or hopliine scarab beetle pollination. Dating the nodes of the phylogenetic tree using non-parametric rate smoothing with a calibration point derived from broad dating of the angiosperms indicates that the divergence between Moraea and its sister genus Ferraria occurred about 25 mya in the early Miocene. The early radiation of Moraea took place against a background of aridification and the spread of open habitats, such as desert, shrubland, and fynbos.  相似文献   

5.
Phylogenetic analyses of Meliaceae, including representatives of all four currently recognized subfamilies and all but two tribes (32 genera and 35 species, respectively), were carried out using DNA sequence data from three regions: plastid genes rbcL, matK (partial), and nuclear 26S rDNA (partial). Individual and combined phylogenetic analyses were performed for the rbcL, matK, and 26S rDNA data sets. Although the percentage of informative characters is highest in the segment of matK sequenced, rbcL provides the greatest number of informative characters of the three regions, resulting in the best resolved trees. Results of parsimony analyses support the recognition of only two subfamilies (Melioideae and Swietenioideae), which are sister groups. Melieae are the only tribe recognized previously that are strongly supported as monophyletic. The members of the two small monogeneric subfamilies, Quivisianthe and Capuronianthus, fall within Melioideae and Swietenioideae, respectively, supporting their taxonomic inclusion in these groups. Furthermore, the data indicate a close relationship between Aglaieae and Guareeae and a possible monophyletic origin of Cedreleae of Swietenioideae. For Trichilieae (Melioideae) and Swietenieae (Swietenioideae) lack of monophyly is indicated.  相似文献   

6.
Abstract The pollen morphology of 11 species of the genus Glycyrrhiza L. with one from each of the genera Glycyrrhizopsis Boiss. & Bal. and Meristotropis Fisch. & C. A. Mey. was investigated by scanning electron microscopy. In pollen morphology, the main differences between Glycyrrhizopsis and Glycyrrhiza are: Glycyrrhizopsis—pollen grains 36.63 × 40.42 μm in size, oblate spheroidal in shape; and Glycyrrhiza—pollen grains 24.47–33.18 × 23.82–31.83 μm in size, prolate spheroidal in shape. Glycyrrhizopsis and Glycyrrhiza should be recognized as two distinct genera based on palynological and morphological characters. Meristotropis and Glycyrrhiza are similar in many important palynological and morphological characters, suggesting that the two should be merged. In Glycyrrhiza, two types of pollen grains, 3‐lobed‐circular or subtriangular in polar view, are found in different species, in accordance with morphological differences in the two groups, shedding light on the classification and evolution of the genus.  相似文献   

7.
  • Li X-Y.1992.Studies on germplasm of Glycyrrhiza by using different taxonomic methods.Advances in Plant Taxonomy in Northwest China 1:7-24.
  • Li X-Y.1993.A study of the system and new taxa of genus Glycyrrhiza L.Bulletin of Botanical Research 13(1):14-43.
  • Turrill WB.1937.Glycyrrhizopsis syriaca Turrill.Bulletin of Miscellaneous Information 2:79.
  • >>更多...  相似文献   


    8.
    Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers   总被引:1,自引:0,他引:1  
    ? Premise of the study: This work represents the first molecular phylogeny of the economically important genus Vitis, an important genetic resource for breeding in grapevine, Vitis vinifera. ? Methods: A molecular phylogeny of Vitis using a combined data set of three noncoding regions of the plastid DNA genome was constructed from 47 accessions covering 30 species of Vitis. The data for the trnL-F marker were combined with previously published data across the Vitaceae. ? Key results: The molecular phylogeny demonstrated monophyly of the genus Vitis. Based on the combined analysis of three genes, Vitis is split into three clades that mirror the continental distribution of these accessions. The diversity is highest in the Asian clade, but the general genetic distances across taxa from different continents are relatively small. ? Conclusions: The findings support a relatively recent and intense gene flow between East Asia and North America and the possible impact of hybridization on the evolution of the genus Vitis. Taxon identity in important stock collections should be screened carefully because roughly 10% of the accessions analyzed in the present study had been misidentified.  相似文献   

    9.
    Phylogenetic relationships in the genus Paphiopedilum were studied using nuclear ribosomal internal transcribed spacer (ITS) and plastid sequence data. The results confirm that the genus Paphiopedilum is monophyletic, and the division of the genus into three subgenera Parvisepalum, Brachypetalum and Paphiopedilum is well supported. Four sections of subgenus Paphiopedilum (Pardalopetalum, Cochlopetalum, Paphiopedilum and Barbata) are recovered as in a recent infrageneric treatment, with strong support. Section Coryopedilum is also recovered, with low bootstrap but high posterior probability values for support of monophyly. Relationships in section Barbata remain unresolved, and short branch lengths and the narrow geographical distribution of many species in the section suggest that it possibly underwent rapid radiation. Mapping chromosome and genome size data (including some new genome size measurements) onto the phylogenetic framework shows that there is no clear trend in increase in chromosome number in the genus. However, the diploid chromosome number of 2n = 26 in subgenera Parvisepalum and Brachypetalum suggests that this is the ancestral condition, and higher chromosome numbers in sections Cochlopetalum and Barbata suggest that centric fission has possibly occurred in parallel in these sections. The trend for genome size evolution is also unclear, although species in section Barbata have larger genome sizes than those in other sections. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 176–196.  相似文献   

    10.
    11.
    The sequences of the internal transcribed spacer (ITS) region of 18S–26S nrDNA for a sample of 16 taxa from theInuleae s. str. and two outgroup taxa are analysed cladistically with PAUP. A consensus tree of the four most parsimonious cladograms is presented. Three different tests of cladogram stability are conducted (Bremer support, parsimony jackknifing and bootstrapping); all tests indicate a high degree of support for the basal nodes of the tree. The ITS phylogeny of the tribe is compared with previous hypotheses based on morphological data. The position ofAnisopappus as sister group to the rest of the tribe is supported by the molecular data, but the proposed subdivision ofInuleae s. str. into a paleate grade group and an epaleate clade is not. The interpretation of the character evolution of, e.g. receptacular paleae and pappus features within the tribe is discussed.  相似文献   

    12.
    Kim JH  Kim DK  Forest F  Fay MF  Chase MW 《Annals of botany》2010,106(5):775-790

    Background

    Previous phylogenetics studies of Asparagales, although extensive and generally well supported, have left several sets of taxa unclearly placed and have not addressed all relationships within certain clades thoroughly (some clades were relatively sparsely sampled). One of the most important of these is sampling within and placement of Nolinoideae (Ruscaceae s.l.) of Asparagaceae sensu Angiosperm Phylogeny Group (APG) III, which subfamily includes taxa previously referred to Convallariaceae, Dracaenaaceae, Eriospermaceae, Nolinaceae and Ruscaceae.

    Methods

    A phylogenetic analysis of a combined data set for 126 taxa of Ruscaceae s.l. and related groups in Asparagales based on three nuclear and plastid DNA coding genes, 18S rDNA (1796 bp), rbcL (1338 bp) and matK (1668 bp), representing a total of approx. 4·8 kb is presented. Parsimony and Bayesian inference analyses were conducted to elucidate relationships of Ruscaceae s.l. and related groups, and parsimony bootstrap analysis was performed to assess support of clades.

    Key Results

    The combination of the three genes results in the most highly resolved and strongly supported topology yet obtained for Asparagales including Ruscaceae s.l. Asparagales relationships are nearly congruent with previous combined gene analyses, which were reflected in the APG III classification. Parsimony and Bayesian analyses yield identical relationships except for some slight variation among the core asparagoid families, which nevertheless form a strongly supported group in both types of analyses. In core asparagoids, five major clades are identified: (1) Alliaceae s.l. (sensu APG III, Amarylidaceae–Agapanthaceae–Alliaceae); (2) Asparagaceae–Laxmanniaceae–Ruscaceae s.l.; (3) Themidaceae; (4) Hyacinthaceae; (5) Anemarrhenaceae–Behniaceae–Herreriaceae–Agavaceae (clades 2–5 collectively Asparagaceae s.l. sensu APG III). The position of Aphyllanthes is labile, but it is sister to Themidaceae in the combined maximum-parsimony tree and sister to Anemarrhenaceae in the Bayesian analysis. The highly supported clade of Xanthorrhoeaceae s.l. (sensu APG III, including Asphodelaceae and Hemerocallidaceae) is sister to the core asparagoids. Ruscaceae s.l. are a well-supported group. Asparagaceae s.s. are sister to Ruscaceae s.l., even though the clade of the two families is weakly supported; Laxmanniaceae are strongly supported as sister to Ruscaceae s.l. and Asparagaceae. Ruscaceae s.l. include six principal clades that often reflect previously named groups: (1) tribe Polygonateae (excluding Disporopsis); (2) tribe Ophiopogoneae; (3) tribe Convallarieae (excluding Theropogon); (4) Ruscaceae s.s. + Dracaenaceae + Theropogon + Disporopsis + Comospermum; (5) Nolinaceae, (6) Eriospermum.

    Conclusions

    The analyses here were largely conducted with new data collected for the same loci as in previous studies, but in this case from different species/DNA accessions and greater sampling in many cases than in previously published analyses; nonetheless, the results largely mirror those of previously conducted studies. This demonstrates the robustness of these results and answers questions often raised about reproducibility of DNA results, given the often sparse sampling of taxa in some studies, particularly the earliest ones. The results also provide a clear set of patterns on which to base a new classification of the subfamilies of Asparagaceae s.l., particularly Ruscaceae s.l. (= Nolinoideae of Asparagaceae s.l.), and examine other putatively important characters of Asparagales.  相似文献   

    13.
    To study the inter- and infrafamilial phylogenetic relationships in the order Caryophyllales sensu lato (s.l.), ~930 base pairs of the matK plastid gene have been sequenced and analyzed for 127 taxa. In addition, these sequences have been combined with the rbcL plastid gene for 53 taxa and with the rbcL and atpB plastid genes as well as the nuclear 18S rDNA for 26 taxa to provide increased support for deeper branches. The red pigments of Corbichonia, Lophiocarpus, and Sarcobatus have been tested and shown to belong to the betacyanin class of compounds. Most taxa of the order are clearly grouped into two main clades (i.e., "core" and "noncore" Caryophyllales) which are, in turn, divided into well-defined subunits. Phytolaccaceae and Molluginaceae are polyphyletic, and Portulacaceae are paraphyletic, whereas Agdestidaceae, Barbeuiaceae, Petiveriaceae, and Sarcobataceae should be given familial recognition. Two additional lineages are potentially appropriate to be elevated to the family level in the future: the genera Lophiocarpus and Corbichonia form a well-supported clade on the basis of molecular and chemical evidence, and Limeum appears to be separated from other Molluginaceae based on both molecular and ultrastructural data.  相似文献   

    14.
    With c. 85 species, the genus Micranthes is among the larger genera of the Saxifragaceae. It is only distantly related to the morphologically similar genus Saxifraga, in which it has frequently been included as Saxifraga section Micranthes. To study the molecular evolution of Micranthes, we analysed nuclear ribosomal (internal transcribed spacer, ITS) and plastid (trnLtrnF) DNA sequences in a comprehensive set of taxa comprising c. 75% of the species. The molecular phylogenetic tree from the combined dataset revealed eight well‐supported clades of Micranthes. These clades agree in part with previously acknowledged subsections or series of Saxifraga section Micranthes. As these eight groups can also be delineated morphologically, we suggest that they should be recognized as sections of Micranthes. New relationships were also detected for some species and species groups, e.g. section Davuricae sister to sections Intermediae and Merkianae, and M. micranthidifolia as a member of section Micranthes. Species proposed to be excluded from the genus Micranthes for morphological reasons were resolved in the molecular tree in Saxifraga. Many morphological characters surveyed were homoplasious to varying extents. Micromorphological characters support comparatively well the clades in the phylogenetic tree. An updated nomenclature and a taxonomic conspectus of sections and species of Micranthes are provided. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 47–66.  相似文献   

    15.
    This study examined subfamilial relationships within Braconidae, using 4 kb of sequence data for 139 taxa. Genetic sampling included previously used markers for phylogenetic studies of Braconidae (28S and 18S rDNA) as well as new nuclear protein‐coding genes (CAD and ACC). Maximum likelihood and Bayesian inference of the concatenated dataset recovered a robust phylogeny, particularly for early divergences within the family. This study focused primarily on non‐cyclostome subfamilies, but the monophyly of the cyclostome complex was strongly supported. There was evidence supporting an independent clade, termed the aphidioid complex, as sister to the cyclostome complex of subfamilies. Maxfischeria was removed from Helconinae and placed within its own subfamily within the aphidioid complex. Most relationships within the cyclostome complex were poorly supported, probably because of lower taxonomic sampling within this group. Similar to other studies, there was strong support for the alysioid subcomplex containing Gnamptodontinae, Alysiinae, Opiinae and Exothecinae. Cenocoeliinae was recovered as sister to all other subfamilies within the euphoroid complex. Planitorus and Mannokeraia, previously placed in Betylobraconinae and Masoninae, respectively, were moved to the Euphorinae, and may share a close affiliation with Neoneurinae. Neoneurinae and Ecnomiinae were placed as tribes within Euphorinae. A sister relationship between the microgastroid and sigalphoid complexes was also recovered. The helconoid complex included a well‐supported lineage that is parasitic on lepidopteran larvae (macrocentroid subcomplex). Helconini was raised to subfamily status, and was recovered as sister to the macrocentroid subcomplex. Blacinae was demoted to tribal status and placed within the newly circumscribed subfamily Brachistinae, which also contains the tribes Diospilini, Brulleiini and Brachistini, all formerly in Helconinae.  相似文献   

    16.
    BACKGROUND AND AIMS: Karyological variation in the Mediterranean genus Borago and cytogeography of subgenus Buglossites in Corsica, Sardinia and the Tuscan Archipelago were investigated in combination with a molecular phylogenetic analysis aimed at elucidating relationships between subgenera and taxa with different chromosome features. METHODS: Karyotype analysis was performed on population samples of B. pygmaea, B. morisiana, B. trabutii and B. officinalis. Phylogenetic analyses were based on ITS1 nrDNA and matK cpDNA sequences. KEY RESULTS: Four base numbers were found, x = 6, 8, 9 and 15, and three ploidy levels based on x = 8. In subgenus Buglossites the Sardinian endemic B. morisiana is diploid with 2n = 18, while B. pygmaea includes three allopatric cytotypes with 2n = 30 (Sardinia), 2n = 32 (southern Corsica) and 2n = 48 (central northern Corsica and Capraia). In subgenus Borago, the Moroccan endemic B. trabutii and the widespread B. officinalis have 2n = 12 and 2n = 16, respectively. Molecular data support the monophyly of Borago, while relationships in subgenus Borago remain unclear. Borago trabutii appears as the earliest divergent lineage and is sister to a clade with B. officinalis, B. morisiana and B. pygmaea. Subgenus Buglossites is also monophyletic, but no correspondence between ITS1 phylogeny and B. pygmaea cytotypes occurs. CONCLUSIONS: Chromosome variation in Borago is wider than previously known. Two base numbers may represent the ancestral condition in this small genus, x = 6 or x = 8. An increase in chromosome number and karyotype asymmetry, a decrease in chromosome size and heterochromatin content, and the appearance of polyploidy are the most significant karyological changes associated with the divergence of the Buglossites clade. High ITS1 variation in the tetra- and hypotetraploid races of B. pygmaea suggests a multiple origin, while the lower polymorphism of the hexaploid race and its allopatric distribution in the northernmost part of the range is better explained with a single origin via union of unreduced and reduced gametes.  相似文献   

    17.
    结合在模式产地采集的高茎紫菀(Aster procerus Hemsley)以及查阅文献资料,发现原始文献对其形态描述不充分且缺乏细胞学和分子系统学方面的报道。本研究对高茎紫菀的形态特征进行了补充描述以及核型特征和系统位置分析,为紫菀属的修订提供资料。结果表明:(1)依据观察结果,补充了高茎紫菀新的形态特征:基生叶羽状分裂,成熟的基生叶较大,长可达26 cm,宽可达8 cm;花序托圆锥状。(2)高茎紫菀的染色体数目为2n=18;核型公式为2n=2x=16 m+2 M,核型属于1 A。(3)基于ITS和ETS标记的分子系统发育树分析表明,高茎紫菀不同居群的2个个体在同一进化支上(LP=100,PP=1.00),且位于核心紫菀属(LP=100,PP=1.00),与女菀[Turczaninovia fastigiata(Fischer)Candolle]构成姐妹类群(LP=52,PP=0.99)。研究认为,高茎紫菀基生叶和花序托的特征可为紫菀属的分类提供新的证据,支持高茎紫菀位于紫菀属(Aster L.)内,建议将女菀并入紫菀属。  相似文献   

    18.
    Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   

    19.
    To evaluate the sectional classification in Carex, subgenus Vignea, the ITS region of 58 species of 20 sections was analyzed with Neighbor Joining (NJ) and Markov chain Monte Carlo (MCMC) methods. Sections Dioicae, Physodeae and Ovales are found to be monophyletic, with C. bohemica well integrated in the section Ovales. Section Heleonastes turns out to be monophyletic, if C. canescens is treated separately in section Canescentes. Section Elongatae is monophyletic, but C. remota is placed in section Remotae and C. bromoides in section Deweyanae. In both analyses, six representatives of section Arenariae cluster together in a terminal group, whereas C. disticha, C. repens and C. siccata form a basal cluster. C. maritima, as the only member of section Incurvae, shares this basal position. C. chordorrhiza is ascribed to section Chordorrhizeae and not ascribed to the paraphyletic section Divisae. C. vulpina and C. otrubae are assigned to section Vulpinae and separated from the heterogeneous section Stenorhynchae. The other members of sections Divisae, Muehlenbergianae, Multiflorae and Stenorhynchae are scattered throughout the trees. The representatives of section Foetidae are dispersed in both analyses, section Paniculatae appears to be non-monophyletic in the molecular results as well. The subgenus appears subdivided in at least four larger subgroups in all analyses. Whereas these subgroups are strongly supported, the relationships between these subgroups remain only poorly resolved.  相似文献   

    20.
    The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow‐ and purple‐flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I. lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency‐dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I. lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号