首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal injury is intricately linked to the activation of three distinct neuronal endonucleases. Since these endonucleases are exquisitely pH dependent, we investigated in primary rat hippocampal neurons the role of intracellular pH (pHi) regulation during nitric oxide (NO)‐induced toxicity. Neuronal injury was assessed by both a 0.4% Trypan blue dye exclusion survival assay and programmed cell death (PCD) with terminal deoxynucleotidyl transferase nick‐end labeling (TUNEL) 24 h following treatment with the NO generators sodium nitroprusside (300 μM), 3‐morpholinosydnonimine (300 μM), or 6‐(2‐hyrdroxy‐1‐methyl‐2‐nitrosohydrazino)‐N‐methyl‐1‐hexanamine (300 μM). The pHi was measured using the fluorescent probe BCECF. NO exposure yielded a rapid intracellular acidification during the initial 30 min from pHi 7.36 ± 0.01 to approximately 7.00 (p < .0001). Within 45 min, a biphasic alkaline response was evident, with pHi reaching 7.40 ± 0.02, that was persistent for a 6‐h period. To mimic the effect of NO‐induced acidification, neurons were acid‐loaded with ammonium ions to yield a pHi of 7.09 ± 0.02 for 30 min. Similar to NO toxicity, neuronal survival decreased to 45 ± 2% (24 h) and DNA fragmentation increased to 58 ± 8% (24 h) (p < .0001). Although neuronal caspases did not play a dominant role, neuronal injury and the induction of PCD during intracellular acidification were dependent upon enhanced endonuclease activity. Furthermore, maintenance of an alkaline pHi of 7.60 ± 0.02 during the initial 30 min of NO exposure prevented neuronal injury, suggesting the necessity for the rapid but transient induction of intracellular acidification during NO toxicity. Through the identification of the critical role of both NO‐induced intracellular acidification and the induction of the neuronal endonuclease activity, our work suggests a potential regulatory trigger for the prevention of neuronal degeneration. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 171–184, 1999  相似文献   

2.
Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide–resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane‐embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt α‐helical secondary structure is evidenced by circular dichroism spectroscopy. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Summary Purified ATP synthase (F 0 F 1) fromRhodospirillum rubrum was reconstituted into asolectin liposomes which were than adsorbed to a planar lipid bilayer. After the addition of an inactive photolabile ATP derivative (caged ATP), ATP was released after illumination with UV light, which led to a transient current in the system. The transient photocurrent indicates that the vesicles and the planar membrane are capacitatively coupled. Stationary pump currents were obtained after addition of protonophores. These currents are specifically inhibited by oligomycin and stimulated threefold by inorganic phosphate (P i ). In analogy oligomycin-sensitive pump currents in the reverse direction coupled to net ATP synthesis were induced by a light-induced concentration jump of ADP out of caged ADP, demonstrating the reversibility of the pump. For this, a preformed proton motive force and P i were necessary.In a second series of experiments, proteoliposomes containing both ATP synthase and bacteriorhodopsin were adsorbed to a planar bilayer. The system was excited by a laser flash. The resulting photocurrents were measured with a time resolution of 2 sec. In the presence of ADP, the signal was modulated by the electrical activity of ATP synthase. ADP-induced charge displacements in ATP synthase, with time constants of 11 and 160 sec were obtained. The kinetics of the charge movements were slowed down byF 0 specific inhibitors (DCCD or oligomycin) and were totally absent if ADP binding toF 1 is prevented by the catalytic site-blocking agent NBD-Cl. The charge displacement of ATP synthase is coupled only to the membrane potential induced by the electrical activity of bacteriorhodopsin. The charge movements are interpreted as conformational transitions during early steps of the reaction cycle of ATP synthase.  相似文献   

4.
The structure and regulation of theTrypanosoma brucei mitochondrial ATP synthase is reviewed. This enzyme complex which catalyzes the synthesis and hydrolysis of ATP within the mitochondrion is a multisubunit complex which is regulated in several ways. Several lines of evidence have shown that the ATP synthase is regulated through the life cycle ofTrypanosoma brucei. The enzyme complex is present at maximal levels in the procyclic form where mitochondrial activity is the highest and cytochromes and Kreb's cycle components are present. The levels of the ATP synthase are decreased in the bloodstream forms where the levels of the mitochondrial cytochromes are absent or substantially decreased. In recent preliminary work we have shown the presence of an ATP synthase inhibitor peptide which may indicate an additional level of complexity to the regulation.  相似文献   

5.
The F1F0 ATP synthase has recently become the focus of anti‐cancer research. It was once thought that ATP synthases were located strictly on the inner mitochondrial membrane; however, in 1994, it was found that some ATP synthases localized to the cell surface. The cell surface ATP synthases are involved in angiogenesis, lipoprotein metabolism, innate immunity, hypertension, the regulation of food intake, and other processes. Inhibitors of this synthase have been reported to be cytotoxic and to induce intracellular acidification. However, the mechanisms by which these effects are mediated and the molecular pathways that are involved remain unclear. In this study, we aimed to determine whether the inhibition of cell proliferation and the induction of cell apoptosis that are induced by inhibitors of the cell surface ATP synthase are associated with intracellular acidification and to investigate the mechanism that underlines the effects of this inhibition, particularly in an acidic tumor environment. We demonstrated that intracellular acidification contributes to the cell proliferation inhibition that is mediated by cell surface ATP synthase inhibitors, but not to the induction of apoptosis. Intracellular acidification is only one of the mechanisms of ecto‐ATP synthase‐targeted antitumor drugs. We propose that intracellular acidification in combination with the inhibition of cell surface ATP generation induce cell apoptosis after cell surface ATP synthase blocked by its inhibitors. A better understanding of the mechanisms activated by ecto‐ATP synthase‐targeted cancer therapies may facilitate the development of potent anti‐tumor therapies, which target this enzyme and do not exhibit clinical limitations. J. Cell. Biochem. 114: 1695–1703, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The permeability transition pore (PTP) is a Ca2+‐dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)‐ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP‐dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch‐clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F‐ATP synthase.  相似文献   

7.
NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.  相似文献   

8.
Using fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine induced either by ATP hydrolysis in the ATPase-ATP synthase complex or by succinate oxidation in inverted submitochondrial particles, correlations have been established between ATP hydrolysis, ATP synthesis and the generation and utilization of ΔpH. The results obtained are best explained in terms of local circuits of protons.  相似文献   

9.
The vagina provides a characteristic low-Na+ and low-pH fluid microenvironment that is considered generally protective. Previous studies have shown that various types of epithelial cells harbor the capacity of intracellular pH (pHi) regulation. However, it remains elusive whether vaginal epithelium could actively regulate pHi by transporting acid–base ions. In this study, we verified that after transient exposure to NH4Cl, the pHi values could rapidly recover from acidification via Na+-H+ exchanger (NHE), Na+-HCO3 cotransporter (NBC), and carbonic anhydrase in human vaginal epithelial cell line VK2/E6E7. Positive expression of the main acid–base transporters including NHE1-2, NBCe1-2, and NBCn1 mRNA was also detected in VK2/E6E7 cells. Moreover, the in vivo study further showed that interfering with the function of V-type H+-ATPase, NHE or NBC expressed in vagina impaired vaginal luminal pH homeostasis in rats. Taken together, our study reveals the property of pH regulation in vaginal epithelial cells, which might provide novel insights into the potential role of vaginal epithelium in the formation of the vaginal acidic microenvironment.  相似文献   

10.
Summary The intracellular pH (pH i ) of Ehrlich ascites tumor cells, both in the steady state and under conditions of acid loading or recovery from acid loading, was investigated by measuring the transmembrane flux of H+ equivalents and correlating this with changes in the distribution ratio of dimethyloxazolidine-2,4-dione (DMO). The pH i of cells placed in an acidic medium (pH o below 7.15) decreases and reaches a steady-state value that is more alkaline than the outside. For example when pH o is acutely reduced to 5.5, pH i falls exponentially from 7.20 ± 0.06 to 6.29 ± 0.04 with a halftime of 5.92 ± 1.37 min, suggesting a rapid influx of H+. The unidirectional influx of H+ exhibits saturation kinetics with respect to extracellular [H+]; the maximal flux is 15.8 ± 0.05 mmol/(kg dry wt · min) andK m is 0.74 ± 0.09 × 10–6 m.Steady-state cells with pH i above 6.8 continuously extrude H+ by a process that is not dependent on ATP but is inhibited by anaerobiosis. Acid-loaded cells (pH i 6.3) when returned to pH o 7.3 medium respond by transporting H+, resulting in a rapid rise in pH i . The halftime for this process is 1.09 ± 0.22 min. The H+ efflux measured under similar conditions increases as the intracellular acid load increases. An ATP-independent as well as an ATP-dependent efflux contributes to the restoration of pH i to its steady-state value.  相似文献   

11.
Kim KB  Lee JW  Lee CS  Kim BW  Choo HJ  Jung SY  Chi SG  Yoon YS  Yoon G  Ko YG 《Proteomics》2006,6(8):2444-2453
In order to detect and identify ubiquitous lipid raft marker proteins, we isolated lipid rafts from different mouse organs, including the liver, lung, large brain, and kidney, and analyzed their proteins via 2-DE. Many protein spots were determined to be ubiquitous in all of the lipid rafts, and were annotated via LC and MS/MS. Twelve proteins were identified as ubiquitous raft proteins, and most of these were determined to be mitochondrial proteins, including mortalin, prohibitin, voltage-dependent anion channel, ATP synthase, NADH dehydrogenase, and ubiquinol-cytochrome c reductase. Via immunoblotting, these proteins were shown to exist in detergent-resistant lipid rafts prepared using different organ tissues. Since these oxidation-reduction respiratory chains and ATP synthase complex were detected in detergent-resistant lipid raft fractions which had been isolated from the plasma membrane but not from the mitochondria, and found in the cell surface when determined by immunofluoresence and immunohistochemistry, we conclude that plasma membrane lipid rafts might contain oxidation-reduction respiratory chains and ATP synthase complex.  相似文献   

12.
Bacteria of the Chlamydiales order are very successful intracellular organisms that grow in human and animal cells, and even in amoebae. They fulfill several essential functions to enter their host cells, establish an intracellular environment favorable for their multiplication and exit the host cell. They multiply in a unique organelle called the inclusion, which is isolated from the endocytic but not the exocytic pathway. A combination of host cell factors and of proteins secreted by the bacteria, from within the inclusion, contribute to the establishment and development of this inclusion. Here we review recent data on the entry mechanisms and maturation of the inclusion.  相似文献   

13.
We have tested the role of the polar loop of subunit c of the Escherichia coli ATP synthase in stabilizing the hairpin structure of this protein. The structure of the c(32-52) peptide corresponding to the cytoplasmic region of subunit c bound to the dodecylphosphocholine micelles was solved by high-resolution NMR. The region comprising residues 41-47 forms a well-ordered structure rather similar to the conformation of the polar loop region in the solution structure of the full-length subunit c and is flanked by short alpha-helical segments. This result suggests that the rigidity of the polar loop significantly contributes to the stability of the hairpin formed by the two helices of subunit c. This experimental system may be useful for NMR studies of interactions between subunit c and subunits gamma and epsilon, which together form the rotor of the ATP synthase.  相似文献   

14.
Three-dimensional cell cultures (spheroids) of biopsies of human duodenum were used to develop a new noninvasive method for studying intercellular and intracellular mechanisms. Through examinations of intracellular pH regulation, high functional similarity to native tissue could be shown, as already evidenced morphologically. A special microperfusion chamber was developed to fix individual spheroids physically to a nylon net, via laminar perfusion flow through the chamber. A significant improvement over current fixation methods was shown by the increase of cell viability almost up to 100%. Viability of the spheroids was confirmed by trypan blue exclusion, by a LIVE/DEAD viability/cytotoxicity kit, and by BCECF distribution. Intracellular pH was measured by use of the pH-sensitive fluorescence dye BCECF. To investigate the intracellular pH regulation, spheroid-like vesicles were acidified by NH4Cl prepulse technique. The subsequent active intracellular pH recovery was blocked with Na+-free Krebs Henseleit (KH) solution, with amiloride KH (inhibitor of the Na+-H+-exchanger), or with H2DIDS KH (inhibitor of the HCO3(-)-Cl(-)-exchanger and Na+-HCO3(-)-cotransporter). The intracellular pH of the spheroids was 7.31 +/- 0.05. pH-backregulation after acidification was prevented by sodium-free buffer, amiloride, and H2DIDS. These experiments indicated the presence of a Na+-H+-exchanger and a Na+-HCO3(-)-cotransporter. In conclusion, the human duodenal spheroid is an excellent physiological system for in vitro studies of the human duodenum.  相似文献   

15.
The ATP synthase complex is a critical enzyme in the energetic pathways of cells because it is the enzyme complex that produces the majority of cellular ATP. It has been shown to be involved in several cardiac phenotypes including heart failure and preconditioning, a cellular protective mechanism. Understanding the regulation of this enzyme is important in understanding the mechanisms behind these important phenomena. Recently there have been several post-translational modifications (PTM) reported for various subunits of this enzyme complex, opening up the possibility of differential regulation by these PTMs. Here we discuss the known PTMs in the heart and other mammalian tissues and their implication to function and regulation of the ATP synthase.  相似文献   

16.
Mitochondrial sirtuin 3 (SIRT3) mediates cellular resistance toward various forms of stress. Here, we show that in mammalian cells subjected to hypoxia and staurosporine treatment SIRT3 prevents loss of mitochondrial membrane potential (ΔΨmt), intracellular acidification and reactive oxygen species accumulation. Our results indicate that: (i) SIRT3 inhibits mitochondrial permeability transition and loss of membrane potential by preventing HKII binding to the mitochondria, (ii) SIRT3 increases catalytic activity of the mitochondrial carbonic anhydrase VB, thereby preventing intracellular acidification, Bax activation and apoptotic cell death. In conclusion we propose that, in mammalian cells, SIRT3 has a central role in connecting changes in ΔΨmt, intracellular pH and mitochondrial-regulated apoptotic pathways.  相似文献   

17.
Chloroplast ATP synthase synthesizes ATP by utilizing a proton gradient as an energy supply, which is generated by photosynthetic electron transport. The activity of the chloroplast ATP synthase is regulated in several specific ways to avoid futile hydrolysis of ATP under various physiological conditions. Several regulatory signals such as Delta mu H(+), tight binding of ADP and its release, thiol modulation, and inhibition by the intrinsic inhibitory subunit epsilon are sensed by this complex. In this review, we describe the function of two regulatory subunits, gamma and epsilon, of ATP synthase based on their possible conformational changes and discuss the evolutionary origin of these regulation systems.  相似文献   

18.
Alkaliphilic Bacillus species that are isolated from nonmarine, moderate salt, and moderate temperature environments offer the opportunity to explore strategies that have developed for solving the energetic challenges of aerobic growth at pH values between 10 and 11. Such bacteria share many structural, metabolic, genomic, and regulatory features with nonextremophilic species such as Bacillus subtilis. Comparative studies can therefore illuminate the specific features of gene organization and special features of gene products that are homologs of those found in non-extremophiles, and potentially identify novel gene products of importance in alkaliphily. We have focused our studies on the facultative alkaliphile Bacillus firmus OF4, which is routinely grown on malate-containing medium at either pH 7.5 or 10.5. Current work is directed toward clarification of the characteristics and energetics of membrane-associated proteins that must catalyze inward proton movements. One group of such proteins are the Na+/H+ antiporters that enable cells to adapt to a sudden upward shift in pH and to maintain a cytoplasmic pH that is 2–2.3 units below the external pH in the most alkaline range of pH for growth. Another is the proton-translocating ATP synthase that catalyzes robust production of ATP under conditions in which the external proton concentration and the bulk chemiosmotic driving force are low. Three gene loci that are candidates for Na+/H+ antiporter encoding genes with roles in Na+- dependent pH homeostasis have been identified. All of them have homologs in B. subtilis, in which pH homeostasis can be carried out with either K+ or Na+. The physiological importance of one of the B. firmus OF4 loci, nhaC, has been studied by targeted gene disruption, and the same approach is being extended to the others. The atp genes that encode the alkaliphile's F1FO-ATP synthase are found to have interesting motifs in areas of putative importance for proton translocation. As an initial step in studies that will probe the importance and possible roles of these motifs, the entire atp operon from B. firmus OF4 has been cloned and functionally expressed in an Escherichia coli mutant that has a full deletion of its atp genes. The transformant does not exhibit growth on succinate, but shows reproducible, modest increases in the aerobic growth yields on glucose as well as membrane ATPase activity that exhibits characteristics of the alkaliphile enzyme. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

19.
The number of genes that are up regulated or down regulated during apoptosis is large and still increasing. In an attempt to characterize differential gene expression during serum factor induced apoptosis in AK-5 cells (a rat histiocytoma), we found subunit 6 and subunit 8 of the transmembrane proton channel and subunit alpha of the catalytic core of the mitochondrial F0-F1 ATP synthase complex to be up regulated during apoptosis. The increase in the expression levels of these subunits was concomitant with a transient increase in the intracellular ATP levels, suggesting that the increase in cellular ATP content is a result of the increase in the expression of ATP synthase subunits' gene and de novo protein synthesis. Depleting the cellular ATP levels with oligomycin inhibited apoptosis significantly, pointing to the requirement of ATP during apoptosis. Caspase 1 and caspase 3 activity and the loss of mitochondrial membrane potential were also inhibited by oligomycin during apoptosis in these cells, suggesting that the oligomycin induced inhibition of apoptosis could be due to inhibition of caspase activity and inhibition of mitochondrial depolarization. However, cytochrome C release during apoptosis was found to be completely independent of intracellular ATP content. Besides the ATP synthase complex genes, other mitochondrial genes like cytochrome C oxidase subunit II and III also showed elevated levels of expression during apoptosis. This kind of a mitochondrial gene expression profile suggests that in AK-5 cells, these genes are upregulated in a time-linked manner to ensure sufficient intracellular ATP levels and an efficient functioning of the mitochondrial respiratory chain for successful completion of the apoptotic pathway.  相似文献   

20.
Lipid rafts and the regulation of exocytosis   总被引:13,自引:0,他引:13  
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号