首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS: We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS: These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.  相似文献   

2.
Research in proteomics has exploded in recent years with advances in mass spectrometry capabilities that have led to the characterization of numerous proteomes, including those from viruses, bacteria, and yeast.  In comparison, analysis of the human proteome lags behind, partially due to the sheer number of proteins which must be studied, but also the complexity of networks and interactions these present. To specifically address the challenges of understanding the human proteome, we have developed HaloTag technology for protein isolation, particularly strong for isolation of multiprotein complexes and allowing more efficient capture of weak or transient interactions and/or proteins in low abundance.  HaloTag is a genetically encoded protein fusion tag, designed for covalent, specific, and rapid immobilization or labelling of proteins with various ligands. Leveraging these properties, numerous applications for mammalian cells were developed to characterize protein function and here we present methodologies including: protein pull-downs used for discovery of novel interactions or functional assays, and cellular localization. We find significant advantages in the speed, specificity, and covalent capture of fusion proteins to surfaces for proteomic analysis as compared to other traditional non-covalent approaches. We demonstrate these and the broad utility of the technology using two important epigenetic proteins as examples, the human bromodomain protein BRD4, and histone deacetylase HDAC1.  These examples demonstrate the power of this technology in enabling  the discovery of novel interactions and characterizing cellular localization in eukaryotes, which will together further understanding of human functional proteomics.                相似文献   

3.
We describe a human-specific cell surface glycoprotein of molecular size 90 000-dalton (90K) and isoelectric point 5 defined by a monoclonal antibody prepared using human hepatoma-mouse hepatoma hybrid cells with a limited number of human chromosomes (6, 7, 14, 20, 21, and X) as immunogens in syngeneic mice. While detectable on cultured human cells of diverse origin, expression of the 90K protein is elevated in hepatoma cells. Moreover, a protein of identical molecular size and slightly more acidic isoelectric point is present in hepatoma culture supernatant. We sought to determine the identity of the 90K protein by comparing it to two hepatoma-expressed, major histocompatibility complex-linked proteins of similar molecular size, the α-chain of C4 and factor B; this comparison was also prompted by the presence of human chromosome 6 in the immunizing hybrids. We find no evidence, however, for these proteins being related. Melanoma-associated antigenic determinants carried by proteins of similar molecular size have been reported, and the possible relation of these proteins to the 90K protein is discussed.  相似文献   

4.
Bovine lens epithelium, cortex and nucleus were screened for the presence of red-cell-membrane band 4.1-like proteins by using an immunoblot method. Lens epithelial cells were found to contain proteins of Mr 78 000 and higher (approximately 150 000) that cross-reacted with anti-(protein 4.1) sera. Fibre cells of the superficial cortex were also found to contain these two proteins, as well as an additional protein of approx. 80 000 Mr. In contrast, deep layers of the cortex and the lens nucleus contained no detectable cross-reactive protein at these Mr values. Treatment of a crude membrane fraction prepared from superficial bovine cortices with a low-ionic-strength buffer resulted in release of the high-Mr band 4.1-like protein. The 80 000- and 78 000-Mr proteins remained with the membrane fraction in low-ionic-strength buffer, but were released into solution by high-ionic-strength-buffer treatment. We have also demonstrated that the human red-blood-cell membrane, like lens epithelial cells and fibre cells, also contains a high-Mr band 4.1-like protein that is released from membranes by low-ionic-strength-buffer treatment.  相似文献   

5.
Production of recombinant proteins in mammalian cells is a successful technology that delivers protein pharmaceuticals for therapies and for diagnosis of human disorders. Cost effective production of protein biopharmaceuticals requires extensive optimization through cell and fermentation process engineering at the upstream and chemical engineering of purification processes at the downstream side of the production process. The majority of protein pharmaceuticals are secreted proteins. Accumulating evidence suggests that the folding and processing of these proteins in the endoplasmic reticulum (ER) is a general rate- and yield limiting step for their production. We will summarize our knowledge of protein folding in the ER and of signal transduction pathways activated by accumulation of unfolded proteins in the ER, collectively called the unfolded protein response (UPR). On the basis of this knowledge we will evaluate engineering approaches to increase cell specific productivities through engineering of the ER-resident protein folding machinery and of the UPR.  相似文献   

6.
Intrinsic protein disorder is a widespread phenomenon characterised by a lack of stable three-dimensional structures and is considered to play an important role in protein-protein interactions (PPIs). This study examined the genome-wide preference of disorder in PPIs by using exhaustive disorder prediction in human PPIs. We categorised the PPIs into three types (interaction between disordered proteins, interaction between structured proteins, and interaction between a disordered protein and a structured protein) with regard to the flexibility of molecular recognition and compared these three interaction types in an existing human PPI network with those in a randomised network. Although the structured regions were expected to become the identifiers for binding recognition, this comparative analysis revealed unexpected results. The occurrence of interactions between disordered proteins was significantly frequent, and that between a disordered protein and a structured protein was significantly infrequent. We found that this propensity was much stronger in interactions between nonhub proteins. We also analysed the interaction types from a functional standpoint by using GO, which revealed that the interaction between disordered proteins frequently occurred in cellular processes, regulation, and metabolic processes. The number of interactions, especially in metabolic processes between disordered proteins, was 1.8 times as large as that in the randomised network. Another analysis conducted by using KEGG pathways provided results where several signaling pathways and disease-related pathways included many interactions between disordered proteins. All of these analyses suggest that human PPIs preferably occur between disordered proteins and that the flexibility of the interacting protein pairs may play an important role in human PPI networks.  相似文献   

7.
Although post-translational modifications such as phosphorylation mediate fundamental biological processes within the cell, relatively few methods exist that allow proteome-wide identification of proteins that interact with these modifications. We constructed a yeast surface-displayed human cDNA library and utilized it to identify protein fragments with affinity for phosphorylated peptides derived from the major tyrosine autophosphorylation sites of the epidermal growth factor receptor or focal adhesion kinase. We identified cDNAs encoding the Src homology 2 domains from adapter protein APS, phosphoinositide 3-kinase regulatory subunit 3, SH2B, and tensin, demonstrating the effectiveness of this approach. Our results suggest that large libraries of functional human protein fragments can be efficiently displayed on the yeast surface. In addition to the analysis of post-translational modifications, yeast surface-displayed human cDNA libraries have many potential applications, including identifying targets and defining potential cross-reactive proteins for small molecules or drugs.  相似文献   

8.
9.
The pineal hormone melatonin regulates various neural and endocrine processes involved in mammalian circadian rhythms. To understand how melatonin mediates these functions, we investigated melatonin-like immunoreactivity (MLI) in cell extracts and human brain. In Western immunoblots, we detected high-molecular-mass protein bands (85-135 kDa) that specifically reacted with the anti-melatonin antibody. The specific protein bands were present in cell extracts from the human brain and cell lines of different origins. The immunoreactive signal of the 135-kDa protein band was highest in a neuroendocrine PC12 cell line, which was 10-fold higher than the signal observed in any cell extracts used. The commercial antibody employed in the Western blots was further purified against serum proteins and thyroglobulins. We have previously reported that the antibody against melatonin recognizes MLI as detected by a sensitive RIA. In the present report we have detected the putative melatonin-specific binding proteins, which could contribute to the MLI. Our results suggest that melatonin binds with specific proteins in different cellular and brain extracts, the protein(s) being maximally synthesized in PC12 cells. These results may indicate a group of yet unknown proteins sharing a melatonin-like epitope or the presence of melatonin-binding protein(s) that regulate availability of free melatonin, or both.  相似文献   

10.
The great diversity of structural conformations available to proteins allows this class of molecules to carry out the vast majority of biochemical functions in the cell. In order to function adequately, proteins must be synthesized, folded/assembled and degraded with great temporal and spatial accuracy. Precise coordination of multiple processes, including ribosome assembly and movement along mRNA, charging and recycling of tRNAs, recruitment and action of molecular chaperones, and tight control of the degradation machinery is essential to create and maintain a stable proteome. It has become recently evident that even slight errors in any of these processes may lead to disease states. Accordingly, increasing numbers of human diseases have been identified that are due to mutations in genes encoding proteins involved in this so-called "protein quality control". Since these processes are essential for the production and maintenance of the entire proteome of the cell, the deleterious effects of these mutations often extend far beyond the faulty gene. This review provides an overview of human disorders caused by defects in mechanisms underlying protein biogenesis and stability.  相似文献   

11.
Song X  Zhou T  Jia H  Guo X  Zhang X  Han P  Sha J 《PloS one》2011,6(11):e27836
Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users.  相似文献   

12.
DNA mismatch repair ensures genomic stability by correcting biosynthetic errors and by blocking homologous recombination. MutS-like and MutL-like proteins play important roles in these processes. In Escherichia coli and yeast these two types of proteins form a repair initiation complex that binds to mismatched DNA. However, whether human MutS and MutL homologs interact to form a complex has not been elucidated. Using immunoprecipitation and Western blot analysis we show here that human MSH2, MLH1, PMS2 and proliferating cell nuclear antigen (PCNA) can be co-immunoprecipitated, suggesting formation of a repair initiation complex among these proteins. Formation of the initiation complex is dependent on ATP hydrolysis and at least functional MSH2 and MLH1 proteins, because the complex could not be detected in tumor cells that produce truncated MLH1 or MSH2 protein. We also demonstrate that PCNA is required in human mismatch repair not only at the step of repair initiation, but also at the step of repair DNA re-synthesis.  相似文献   

13.
Low B vitamin status is linked with human vascular disease. We employed a proteomic and biochemical approach to determine whether nutritional folate deficiency and/or hyperhomocysteinemia altered metabolic processes linked with atherosclerosis in ApoE null mice. Animals were fed either a control fat (C; 4 % w/w lard) or a high-fat [HF; 21 % w/w lard and cholesterol (0/15 % w/w)] diet with different B vitamin compositions for 16 weeks. Aorta tissue was prepared and global protein expression, B vitamin, homocysteine and lipoprotein status measured. Changes in the expression of aorta proteins were detected in response to multiple B vitamin deficiency combined with a high-fat diet (P < 0.05) and were strongly linked with lipoprotein concentrations measured directly in the aorta adventitia (P < 0.001). Pathway analysis revealed treatment effects in the aorta-related primarily to cytoskeletal organisation, smooth muscle cell adhesion and invasiveness (e.g., fibrinogen, moesin, transgelin, vimentin). Combined B vitamin deficiency induced striking quantitative changes in the expression of aorta proteins in atherosclerotic ApoE null mice. Deregulated expression of these proteins is associated with human atherosclerosis. Cellular pathways altered by B vitamin status included cytoskeletal organisation, cell differentiation and migration, oxidative stress and chronic inflammation. These findings provide new insight into the molecular mechanisms through which B vitamin deficiency may accelerate atherosclerosis.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0446-y) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

N-linked protein glycosylation plays an important role in various biological processes, including protein folding and trafficking, and cell adhesion and signaling. The acquisition of a novel N-glycosylation site may have significant effect on protein structure and function, and therefore, on the phenotype.

Results

We analyzed the human glycoproteome data set (2,534 N-glycosylation sites in 1,027 proteins) and identified 112 novel N-glycosylation sites in 91 proteins that arose in the human lineage since the last common ancestor of Euarchonta (primates and treeshrews). Three of them, Asn-196 in adipocyte plasma membrane-associated protein (APMAP), Asn-91 in cluster of differentiation 166 (CD166/ALCAM), and Asn-76 in thyroglobulin, are human-specific. Molecular evolutionary analysis suggested that these sites were under positive selection during human evolution. Notably, the Asn-76 of thyroglobulin might be involved in the increased production of thyroid hormones in humans, especially thyroxine (T4), because the removal of the glycan moiety from this site was reported to result in a significant decrease in T4 production.

Conclusions

We propose that the novel N-glycosylation sites described in this study may be useful candidates for functional analyses to identify innovative genetic modifications for beneficial phenotypes acquired in the human lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0468-5) contains supplementary material, which is available to authorized users.  相似文献   

15.
We have studied the development of intermediate filament proteins in the neurons found in hippocampal cell cultures using single and double label immunofluorescence with both monoclonal and polyclonal antibodies. Neurons in these cultures are known to differentiate in a manner similar to their counterparts in situ: in particular they develop axonal and dendritic processes which differ from each other in form, in ultrastructure, and in synaptic polarity. During the first days in culture, developing neurons could not be stained with antibodies against any of the neurofilament proteins, although many cells reacted with anti-vimentin. Later in the first week, antibody staining revealed clearly filamentous staining for the L (68 000 daltons) and the M (145 000 daltons) neurofilament subunits, though M reactivity was much stronger at this earlier stage of development. Some neurofilament positive profiles in many cells could also be stained with vimentin, though the vimentin immunoreactivity became progressively less pronounced during further development, and disappeared after about two weeks in culture. Also at about two weeks in vitro we noted the first appearance of neurofilament H protein (200 000 daltons) immunoreactivity, which was localized to a subset of long neurites which could be identified on morphological grounds as axons. These processes lacked staining for microtubule associated protein 2 (MAP2), a dendritic marker. They tended to be close to islands of glial cells, suggesting that H induction may require complex neuron-glial interactions. These results are consistent with the suggestion that H protein immunoreactivity is a marker for axonal outgrowth. In addition to obvious filamentous staining, we were able to localize neurofilament antigens to an interesting class of small ring-like structures, found increasingly frequently as the cultures aged. We also present evidence that tyrosinated alpha-tubulin is present both within dendrites and axons of neurons in these cultures.  相似文献   

16.
Mouse urine contains major urinary proteins (MUPs) that are not found in human urine. Therefore, even healthy mice exhibit proteinuria, unlike healthy humans, making it challenging to use mice as models for human diseases. It was also unknown whether dipsticks for urinalysis could measure protein concentrations precisely in urine containing MUPs. To resolve these problems, we produced MUP-knockout (Mup-KO) mice by removing the Mup gene cluster using Cas9 proteins and two guide RNAs and characterized the urinary proteins in these mice. We measured the urinary protein concentrations in Mup-KO and wild-type mice using a protein quantitation kit and dipsticks. We also examined the urinary protein composition using SDS-PAGE and two-dimensional electrophoresis (2DE). The urinary protein concentration was significantly lower (P<0.001) in Mup-KO mice (17.9 ± 1.8 mg/dl, mean ± SD, n=3) than in wild-type mice (73.7 ± 8.2 mg/dl, n=3). This difference was not reflected in the dipstick values, perhaps due to the low sensitivity to MUPs. This suggests that dipsticks have limited ability to measure changes in MUPs with precision. SDS-PAGE and 2DE confirmed that Mup-KO mice, like humans, had no MUPs in their urine, whereas wild-type mice had abundant MUPs in their urine. The absence of the masking effect of MUPs in 2DE would enable clear comparisons of urinary proteins, especially low-molecular-weight proteins. Thus, Mup-KO mice may provide a useful model for human urinalysis.  相似文献   

17.
Like most intracellular pathogens, Toxoplasma synthesizes and secretes an arsenal of proteins to successfully invade its host cell and hijack host functions for intracellular survival. The rhoptries are key secretory organelles that inject proteins into the host cell where they are positioned to co-opt host processes, although little is known regarding how these proteins exert their functions. We show here that the rhoptry protein ROP13 is synthesized as a pre-pro-protein that is processed in the parasite. Processing occurs at a conserved SφXE cleavage site as mutagenesis of glutamic acid to alanine at the P1 position disrupts ROP13 maturation. We also demonstrate that processing of the prodomain is not necessary for rhoptry targeting and secretion. While gene disruption reveals that ROP13 is not essential for growth in fibroblasts in vitro or for virulence in vivo, we find that ROP13 is a soluble effector protein that can access the cytoplasm of host cells. Exogenously expressed ROP13 in human cells remains cytosolic but also appears toxic, suggesting that over-expression of this effector protein is disrupting some function within the host cell.  相似文献   

18.
Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions.  相似文献   

19.
Homogenates, membranes and cytosol of rat and human platelets were found to contain cGMP-dependent protein kinase immunoreactivity. Specific cGMP-dependent protein kinase immunoreactivity was about 1.7 pmol protein kinase/mg protein for homogenates of human platelets and 0.7 pmol/mg for homogenates of rat platelets; the majority appeared to be associated with the membrane fraction. In membranes of platelets low concentrations of cAMP (0.5-2 microM) stimulated the phosphorylation of five major proteins with apparent relative molecular masses, Mr, of 240 000, 130 000, 50 000, 42 000 and 22 000 while low concentrations of cGMP (0.5-2 microM) stimulated the phosphorylation of three major proteins with apparent Mr of 130 000, 50 000 and 46 000. An affinity-purified antibody against the cGMP-dependent protein kinase was prepared which specifically inhibited the activity of cGMP-dependent protein kinase. In membranes of human platelets this affinity-purified antibody inhibited the cGMP-stimulated phosphorylation of the three proteins with Mr of 130 000, 50 000 and 46 000 while it had no effect on the cAMP-dependent and cyclic-nucleotide-independent protein phosphorylation. The results demonstrate that platelets contain a cGMP-dependent protein kinase and at least three specific substrates for this enzyme. Two of these substrates, the proteins with apparent molecular Mr of 130 000 and 50 000, are substrates for both cAMP- and cGMP-dependent protein kinase. The protein with apparent Mr of 130 000 appears to be closely related to an intrinsic plasma membrane protein of vascular smooth muscle cells which is a substrate for a membrane-associated cGMP-dependent protein kinase. Therefore, cGMP-dependent protein kinase and cGMP-regulated phosphoproteins may mediate in platelets the intracellular effects of those hormones, vasodilators and drugs which elevate the level of cGMP and inhibit platelet aggregation.  相似文献   

20.
The antisera specific for dehistonized Hela cell chromatin were obtained by injecting rabbits or goats. Treatment of chromatin with cis-DDP crosslinked the active proteins to DNA thus preventing dissociation of the proteins in a high salt environment.Immunochemical staining of electrophoretically separated chromosomal proteins transferred to nitrocellulose sheets revealed that cis-DDP among others crosslinked the protein with m.w. of about 81 000. This protein is the only major protein antigen presented in several human tumors and absent in normal human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号