首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy=2,2'-bipyridine and bbob=bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb=bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'-bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the Delta isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Lambda-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the Delta isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.  相似文献   

2.
Poly(lactic acid) (PLA) and poly(acrylic acid) (PAA) biomaterials with luminescent ruthenium tris(bipyridine) centers couple drug delivery and imaging functions. Hydrophobic [Ru(bpyPLA2)3](PF6)2 (1) was generated from [Ru[bpy(CH2OH)2]3](PF6)2 in bulk monomer using 4-(dimethylamino)pyridine as the catalyst. The bromoesters, [Ru[bpy(CH2OR)2]3](PF6)2, [Ru[bpy(C13H27)2][bpy(CH2OR]2](PF6)2 (4), and [Ru[bpy(PLAOR)2]3]2+ (9) (R=COCBr(CH3)2), served as initiators for tert-butyl acrylate (tBA) polymerization. Conversion of PtBA to PAA via hydrolysis affords water soluble materials, [Ru(bpyPAA2)3]2+ (7) and [Ru[bpy(C13H27)2](bpyPAA2)2]2+ (8) and the amphiphilic star polymer [Ru[bpy(PLA-PAA)2]3)](PF6)2 (11), which is soluble in a H2O/CH3CN (1:1) mixture. Luminescence excitation and emission spectra of the Ru polymers were in agreement with the parent [Ru(bpy)3]2+ chromophore (lambdaex=468, lambdaem=621 nm). Lifetimes of tau approximately 700 ns in both air and nitrogen atmospheres are typical for most materials; however, the amphiphilic star block copolymer 11 is quenched by oxygen to some degree. Thermal analysis shows the expected glass transitions for the polymeric ruthenium complex materials.  相似文献   

3.
A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI-Chol/pCMS-EGFP complexes in Jurkat cells showed high levels of expressed Green Fluorescent Protein (GFP) with little toxicity as determined by flow cytometry. These novel water-soluble lipopolymers provided good transfection efficiency with other desirable characteristics such as water solubility, free primary amino groups for efficient DNA condensation and high buffer capacity that indicated the possibility of efficient endosomal release.  相似文献   

4.
Electrochemiluminescence (ECL) based on allantoin and tris(2,2'-bipyridine)ruthenium (II) [Ru(bpy)3 (2+)] was studied in aqueous alkaline buffer solution (pH 11.0). In a flowing system, the eluted allantoin was mixed with 1.0 mmol/L Ru(bpy)3 (2+). When the solution passed through a thin layer flow electrolytic cell equipped with a glassy carbon disc electrode (22.1 mm2), both hydroxyl groups of allantoin and Ru(bpy)3 (2+) were oxidized at the potential of +1.50 V (vs. Ag/AgCl). The luminescence with lambdamax 610 nm caused by the reaction of electrolytically formed Ru(bpy)3 (2+) with alkoxide radical to generate the excited state of Ru(bpy)3 (2+*). A possible ECL process of allantoin in Ru(bpy)3 (2+) alkaline solution has been discussed. In addition, the factors affecting the ECL response of allantoin are also investigated.  相似文献   

5.
Although the clinical use of immunoassays based on the oxidative‐reduction electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium (II)/tri‐n‐propylamine has been a great success, elucidation of the ECL generation mechanism still remains unsatisfactory. We report here our experimental observations of long‐lived luminescence that remains detectable for several seconds after termination of electrochemical heterogeneous oxidation. Long‐lived luminescence was observed in both a surfactant‐free buffer and a surfactant‐containing broadly used commercial buffer under different conditions. The slow decay of emission seems to have been unnoticed in previous ECL mechanistic studies. Within the frame of the reaction schemes so far proposed, its origin is inconclusively ascribed to the reductive‐oxidation process of ruthenium (II) complex, that is Ru(bpy)32+ → Ru(bpy)31+ → Ru(bpy)32+* → Ru(bpy)32+ with the involvement of the tri‐n‐propylamine‐derived radical cation. It is anticipated that long‐lived ECL will suggest a research approach to separate some homogeneous reactions from the complicated reaction system and therefore help to resolve the mechanistic mystery.  相似文献   

6.
We carried out time-resolved luminescence and transient absorption studies of tris(2,2'-bipyridine)ruthenium(ii) complex, Ru(bpy)3(2+) assembled in the supercages of zeolites X and Y exchanged with various alkali metal cations. The average lifetime of the luminescence decay, a measure of the photoinduced electron transfer (PET) rate, of Ru(bpy)3(2+)* was found to decrease with increasing the electron-acceptor strength of the host which is represented by the Sanderson's electronegativity scale. This result strongly suggests that the zeolite host plays the role of electron acceptor for Ru(bpy)3(2+)*. However, we could not detect Ru(bpy)3(3+) in the transient absorption spectra, most likely due to very low absorption coefficient of Ru(bpy)3(3+) and to the low efficiency of net PET. For the above observation to be made, it is essential to employ the dehydrated zeolite hosts to allow direct interaction between the guest Ru(ii) complex and the host framework. The present study demonstrates the active role of the zeolite hosts during the PET of incorporated Ru(bpy)3(2+) under the carefully controlled experimental conditions. This report demonstrates the fact that the zeolite hosts can serve as electron acceptors although in the past zeolites were shown to play the role of electron donors.  相似文献   

7.
The binding of tris(2,2′-bipyridyl)ruthenium(II) cations [Ru(bpy)] with single- and double-stranded (ss and ds) DNA, and the polynucleotides poly(A), poly(C), poly(G), poly(I), poly(I) · poly(C), and poly(U), was studied in aqueous solution. Steady-state electrical conductivity measurements with the polynucleotides, ssDNA, and dsDNA reveal that approximately three nucleotides offer one binding site. This may be compared with the ratio [nucleotide]/[Mg2+] of 2.4 : 1 for dsDNA. After laser excitation (353 nm), the luminescence of Ru(bpy) bound to nucleic acids shows two decay components. The contribution of the fast component, which is interpreted as resulting from quenching processes of the absorbed ruthenium complex, exhibits a maximum with increasing [nucleotide]/[Ru(bpy)] at a ratio of about three to one. Bound Ru(bpy) can be released from the strand by addition of NaClO4 [half-concentration: 2.5 and ≤ 10 mM for poly(U) and dsDNA, respectively].  相似文献   

8.
High molecular weight poly(ethylene glycol) (PEG) derivatized iron tris(bipyridine) complexes, presenting hydroxyl end groups for further modification as bioconjugates, copolymers, or cross-linking agents, were synthesized via ring-opening anionic polymerization of ethylene oxide from hydroxyl-functionalized bipyridine (bpy) initiators and subsequent chelation to iron(II). Bpy-centered PEG macroligands (bpyPEG(2)) with molecular weights ranging from 4,000 to 17,000 and low polydispersity indices (<1.1) were obtained. Chelation of the bpyPEG(2) macroligands to iron(II) sulfate was studied in aqueous solution by titration and kinetics experiments, which revealed unexpected air sensitivity compared to nonpolymeric iron tris(bipyridine) complexes. Red-violet aqueous solutions of [Fe(bpyPEG(2))(3)](2+) begin to bleach within hours when exposed to air. Enhanced polymer degradation and gel formation of acrylate-modified bpyPEG(2) in the presence of Fe(2+) suggest that radicals may be involved. Under argon, the chromophores are stable. Polymeric iron complexes are slower to form and faster to degrade in air with increasing bpyPEG(2) molecular weight. These studies demonstrate the influence of molecular weight in polymeric iron tris(bipyridine) complex coordination chemistry and reactivity.  相似文献   

9.
A 25-kDa linear polyethylenimine (25 kDa L-PEI) has proven to be efficient and versatile agent for gene delivery. Therefore, we determined the optimal transfection conditions of 25 kDa L-PEI and examined whether it has comparable transfection efficiency with other commercially available reagents, ExGen 500, LipofectAMINE 2000, and Effectene by using EGFP expression vector in different cell lines. Transfection efficiency and cytotoxicity were measured by flow cytometry. First of all, we determined the optimal ratio of nitrogen to phosphorous (N/P) and DNA concentration. With the increase of N/P ratio and DNA amounts, transfection efficiency increased with a slight variation in cell types. The optimal amounts of 25 kDa L-PEI were determined at N/P ratio 40 and DNA concentration varied among the cell types. In addition, 25 kDa L-PEI worked efficiently and was less toxic than other reagents. However, the efficiency and toxicity of all these reagents varied according to cell types as well as the ratio of DNA to reagents and the amounts of DNA. Our finding illustrates the importance of optimal transfection conditions of 25 kDa L-PEI to obtain maximal transgene expression with less cytotoxicity. Importantly, the optimization of those conditions may make possible to perform transfection cost-effectively and efficiently.  相似文献   

10.
A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

11.
Abstract

A new Ru(II) complex of [Ru(bpy)2(Hppip)]2+ {bpy = 2,2′-bipyridine; Hppip = 2-(4-(pyridin- 2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)2(Hpip)]2+ {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline}. The acid-base properties of [Ru(bpy)2(Hppip)]2+ studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)2(Hppip)]2+ that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) × 105 M?1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

12.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   

13.
Herein, an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) aptasensor using in-situ produced ascorbic acid as coreactant was successfully constructed for detection of thrombin. Firstly, the composite of Ru(bpy)(3)(2+) and platinum nanoparticles (Ru-PtNPs) were immobilized onto Nafion coated glass carbon electrode, followed by successive adsorption of streptavidin-alkaine phosphatase conjugate (SA-ALP) and biotinylated anti-thrombin aptamer to successfully construct an ECL aptasensor for thrombin determination. In our design, Pt nanoparticles in Ru(bpy)(3)(2+)-Nafion film successfully inhibited the migration of Ru(bpy)(3)(2+) into the electrochemically hydrophobic region of Nafion and facilitated the electron transfer between Ru(bpy)(3)(2+) and electrode surface. Furthermore, ALP on the electrode surface could catalyze hydrolysis of ascorbic acid 2-phosphate to in-situ produce ascorbic acid, which co-reacted with Ru(bpy)(3)(2+) to obtain quite fast, stable and greatly amplified ECL signal. The experimental results indicated that the aptasensor exhibited good response for thrombin with excellent sensitivity, selectivity and stability. A linear range of 1 × 10(-15)-1 × 10(-8) M with an ultralow detection limit of 0.33 fM (S/N=3) was obtained. Thus, this procedure has great promise for detection of thrombin present at ultra-trace levels during early stage of diseases.  相似文献   

14.
The use of biocompatible polymeric gene carriers may overcome the current problems associated with viral vectors in safety, immunogenicity, and mutagenesis. Nontoxic water-soluble lipopolymer (WSLP), poly(ethylenimine)-co-[N-(2-aminoethyl) ethyleneimin]-co-N-(N-cholesteryloxycarbonyl-(2-aminoethyl)ethylenimine) was synthesized using branched poly(ethylenimine) (PEI, mw 1800) and cholesteryl chloroformate. Following synthesis and purification, the structure and molecular weight of WSLP were confirmed by (1)H NMR and MADI-TOF mass spectrometry, respectively. The percentage of cholesterol conjugated to PEI was about 47%, and the average molecular weight of WSLP was approximately 2000 Da. WSLP/pDNA complexes were prepared at different N/P (nitrogen atoms of WSLP/phosphate of plasmid DNA) ratios and characterized in terms of particle size, zeta potential, osmolarity, surface morphology, and cytotoxicity. WSLP condensed plasmid DNA when N/P ratio reached 2.5/1 and no free DNA was detected at N/P ratio of 5/1 and above, as determined by agarose gel electrophoresis. The mean particle size was in the range of 25.9 to 148.5 nm and was dependent on N/P ratios. Atomic force microscopy (AFM) showed complete condensation of plasmid DNA with spherical particles of approximately 50 nm in diameter. WSLP/pDNA complexes or WSLP itself were nontoxic to CT-26 colon adenocarcinoma and 293 T human embryonic kidney transformed cells when formulated at the N/P ratio of 10/1 and below as determined by MTT assay. In contrast, PEI25000/pDNA complexes were toxic to these cells. Erythrocytes aggregated when incubated with PEI25000/pCMV-Luc complexes at high DNA concentrations, but there was little aggregation with WSLP/pCMV-Luc complexes. WSLP/pCMV-Luc complexes demonstrated higher transfection efficiency in both CT-26 and 293 T cells compared to PEI25000- or PEI1800-based formulations. WSLP/pCMV-Luc complexes are nontoxic and showed enhanced in vitro transfection. Thus, WSLP will be a suitable carrier for in vivo gene delivery.  相似文献   

15.
Ruthenium(II) complexes have rich photophysical attributes, which enable novel design of responsive luminescence probes to selectively quantify biochemical analytes. In this work, we developed a systematic series of Ru(II)-bipyrindine complex derivatives, [Ru(bpy)(3-n)(DNP-bpy)(n)](PF(6))(2) (n = 1, 2, 3; bpy, 2,2'-bipyridine; DNP-bpy, 4-(4-(2,4-dinitrophenoxy)phenyl)-2,2'-bipyridine), as luminescent probes for highly selective and sensitive detection of thiophenol in aqueous solutions. The specific reaction between the probes and thiophenol triggers the cleavage of the electron acceptor group, 2,4-dinitrophenyl, eliminating the photoinduced electron transfer (PET) process, so that the luminescence of on-state complexes, [Ru(bpy)(3-n)(HP-bpy)(n)](2+) (n = 1, 2, 3; HP-bpy, 4-(4-hydroxyphenyl)-2,2'-bipyridine), is turned on. We found that the complex [Ru(bpy)(DNP-bpy)(2)](2+) remarkably enhanced the on-to-off contrast ratio compared to the other two (37.8 compared to 21 and 18.7). This reveals a new strategy to obtain the best Ru(II) complex luminescence probe via the most asymmetric structure. Moreover, we demonstrated the practical utility of the complex as a cell-membrane permeable probe for quantitative luminescence imaging of the dynamic intracellular process of thiophenol in living cells. The results suggest that the new probe could be a very useful tool for luminescence imaging analysis of the toxic thiophenol in intact cells.  相似文献   

16.
We examined the relationship between the structures of hetero-/homoleptic ruthenium(II) tris(bipyridine) metal complexes (Ru(II)(bpy)(3)) and their binding properties for α-chymotrypsin (ChT) and cytochrome c (cyt c). Heteroleptic compound 1a binds to both ChT and cyt c in 1:1 ratio, whereas homoleptic 2 forms 1:2 protein complex with ChT but 1:1 complex with cyt c. These results suggest that the structure of the recognition cavity in Ru(II)(bpy)(3) can be designed for shape complementarity to the targeted proteins. In addition, Ru(II)(bpy)(3) complexes were found to be potent inhibitors of cyt c reduction and to permeate A549 cells.  相似文献   

17.
Spectroscopic parameters for two novel ruthenium complexes on binding to nucleic acids of varying sequences and conformations have been determined. These complexes, Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppz = dipyrido[3,2:a-2',3':c]-phenazine) serve as "molecular light switches" for DNA, displaying no photoluminescence in aqueous solution but luminescing intensely in the presence of DNA. The luminescent enhancement observed upon binding is attributed to the sensitivity of the excited state to quenching by water; in DNA, the metal complex, upon intercalation into the helix, is protected from the aqueous solvent, thereby preserving the luminescence. Correlations between the extent of protection (depending upon the DNA conformation) and the luminescence parameters are observed. Indeed, the strongest luminescent enhancement is observed for intercalation into DNA conformations which afford the greatest amount of overlap with access from the major groove, such as in triple helices. Differences are observed in the luminescent parameters between the two complexes which also correlate with the level of water protection. In the presence of nucleic acids, both complexes exhibit biexponential decays in emission. Quenching studies are consistent with two intercalative binding modes for the dppz ligand from the major groove: one in which the metal-phenazine axis lies along the DNA dyad axis and another where the metal-phenazine axis lies almost perpendicular to the DNA dyad axis. Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ are shown here to be unique reporters of nucleic acid structures and may become valuable in the design of new diagnostics for DNA.  相似文献   

18.
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier.  相似文献   

19.
A thermoresponsive cationic copolymer, poly( N-isopropylacrylamide- co- N-(3-(dimethylamino)propyl)methacrylamide)- b-polyethyleneimine (P(NIPAAm- co-NDAPM)- b-PEI), was designed and synthesized as a potential nonviral gene vector. The lower critical solution temperature (LCST) of P(NIPAAm- co-NDAPM)- b-PEI in water measured by UV-vis spectroscopy was 38 degrees C. P(NIPAAm- co-NDAPM)- b-PEI as the gene vector was evaluated in terms of cytotoxicity, buffer capability determined by acid-base titration, DNA binding capability characterized by agarose gel electrophoresis and particle size analysis, and in vitro gene transfection. P(NIPAAm- co-NDAPM)- b-PEI copolymer exhibited lower cytotoxicity in comparison with 25 kDa PEI. Gel retardation assay study indicated that the copolymer was able to bind DNA completely at N/P ratios higher than 30. At 27 degrees C, the mean particle sizes of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes decreased from 1200 to 570 nm corresponding to the increase in N/P ratios from 10 to 60. When the temperature changed to 37 degrees C, the mean particle sizes of complexes decreased from 850 to 450 nm correspondingly within the same N/P ratio range due to the collapse of thermoresponsive PNIPAAm segments. It was found that the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes was higher than or comparable to that of 25 kDa PEI/DNA complexes at their optimal N/P ratios. Importantly, the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes could be adjusted by altering the transfection and cell culture temperature.  相似文献   

20.
An ECL approach was developed for the determination of codeine or morphine based on tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)) immobilized in organically modified silicates (ORMOSILs). Tetramethoxysilane (TMOS) and dimethyldimethoxysilane (DiMe-DiMOS) were selected as co-precursors for ORMOSILs, which were then immobilized on a surface of glassy carbon electrode (GCE) by a dip-coating process. Ru(bpy)(3)(2+) was immobilized in the ORMOSIL film via ion-association with poly(p-styrenesulphonate). The ORMOSIL-modified GCE presented good electrochemical and photochemical activities. In a flow system, the eluted codeine or morphine was oxidized on the modified GCE and reacted with immobilized Ru(bpy)(3)(2+) at a potential of +1.20 V (vs. Ag/AgCl). The modified electrode was used for the ECL determination of codeine or morphine and showed high sensitivity. The calibration curves were linear in the range 2 x 10(-8)-5 x 10(-5) mol/L for codeine and 1 x 10(-7)-3 x 10(-4) mol/L for morphine. The detection limit was 5 x 10(-9) mol/L for codeine and 3 x 10(-8) mol/L for morphine, at signal:noise ratio (S:N)=3. Both codeine and morphine showed reproducibility with RSD values <2.5% at 1.0 x 10(-6) mol/L. Furthermore, the modified electrode immobilized Ru(bpy)(3)(2+) was applied to the ECL determination of codeine or morphine in incitant samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号