共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct relationship between increased glutamine synthetase activity and enhanced biosurfactant production was found in Pseudomonas aeruginosa grown in nitrate and Proteose Peptone media. A chloramphenicol-tolerant strain showed a twofold increase in biosurfactant production and glutamine synthetase activity. Increased ammonium and glutamine concentrations repressed both phenomena. 相似文献
2.
Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. 总被引:3,自引:1,他引:3
下载免费PDF全文

H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O Kppeli A Fiechter 《Applied microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
3.
H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O K?ppeli A Fiechter 《Applied and environmental microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
4.
Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. 总被引:8,自引:0,他引:8
下载免费PDF全文

We isolated transposon Tn5-GM-induced mutants of Pseudomonas aeruginosa PG201 that were unable to grow in minimal media containing hexadecane as a carbon source. Some of these mutants lacked extracellular rhamnolipids, as shown by measuring the surface and interfacial tensions of the cell culture supernatants. Furthermore, the concentrated culture media of the mutant strains were tested for the presence of rhamnolipids by thin-layer chromatography and for rhamnolipid activities, including hemolysis and growth inhibition of Bacillus subtilis. Mutant 65E12 was unable to produce extracellular rhamnolipids under any of the conditions tested, lacked the capacity to take up 14C-labeled hexadecane, and did not grow in media containing individual alkanes with chain lengths ranging from C12 to C19. However, growth on these alkanes and uptake of [14C]hexadecane were restored when small amounts of purified rhamnolipids were added to the cultures. Mutant 59C7 was unable to grow in media containing hexadecane, nor was it able to take up [14C]hexadecane. The addition of small amounts of rhamnolipids restored growth on alkanes and [14C]hexadecane uptake. In glucose-containing media, however, mutant 59C7 produced rhamnolipids at levels about twice as high as those of the wild-type strain. These results show that rhamnolipids play a major role in hexadecane uptake and utilization by P. aeruginosa. 相似文献
5.
An indigenous strain Pseudomonas aeruginosa S2 (P. aeruginosa S2), isolated from diesel-contaminated soil, produced extracellular surface-active material identified as rhamnolipid. Due to its excellent surface activity, rhamnolipid is known to be well-suited for stimulating the bioremediation efficiency of oil contaminated sites. To improve production yield of rhamnolipid with P. aeruginosa S2, various carbon and nitrogen sources were screened to select favorable ones leading to better biosurfactant production yield. It was found that using 4% glucose could attain better rhamnolipid yield, while 50 mM NH4NO3 appeared to be the most preferable nitrogen source. Meanwhile, the effect of carbon to nitrogen ratio (C/N ratio) on rhamnolipid yield was also investigated, and the optimal C/N ratio was identified as approximately 11.4. Moreover, response surface methodology (RSM) was applied to optimize the trace element concentration for rhamnolipid production. Results from two-level design indicate that concentrations of MgSO4 and FeSO4 were the most significant factors affecting rhamnolipid production. Using steepest ascent method and RSM analysis, an optimal medium composition was determined, giving a rhamnolipid production yield of 2.37 g/L in 100 h at 37 degrees C and 200 rpm agitation. Scale-up production of rhamnolipid in a well-controlled 5 L jar fermentor using the optimal medium and operating condition (at 37 degrees C and pH 6.8) further elevated the biosurfactant production yield to 5.31 g/L (in 97 h), which is over 2-fold higher than the best results obtained from shake-flask tests. 相似文献
6.
A new bacterial strain isolated from activated sludge, identified as Pseudomonas aeruginosa EMS1, produced a biosurfactant when grown on acidified soybean oil as the sole carbon source. An optimum biosurfactant production of 5 g/L was obtained with the following medium composition: 2% acidified soybean oil, 0.3% NH4NO3, 0.03% KH2PO4, 0.03% K2HPO4, 0.02% MgSO4.7H2O and 0.025% CaCl2.2H2O, with shaking at 200 rpm for an incubation period of 100 h at 30 degrees C. The production of the biosurfactant was found to be a function of cell growth, with maximum production occurring during the exponential phase. Hemolysis of erythrocytes and thin-layer chromatography studies revealed that the secreted biosurfactant was rhamnolipid. To overcome the complex environmental regulation with respect to rhamnolipid biosynthesis, and to replace the opportunistic pathogen P. aeruginosa with a safe industrial strain, attempts were made to achieve rhamnolipid production in a heterologous host, Pseudomonas putida, using molecular cloning of rhlAB rhamnosyltransferase genes with the rhlRI quorum sensing system, assuming that a functional rhamnosyltransferase would catalyze the formation of rhamnosyl-6-hydroxydecanoyl-6-hydroxydecanoate (mono-rhamnolipid) in P. putida. It was shown that rhamnolipid can be produced in the heterologous strain, P. putida, when provided with the rhamnosyltransferase genes. 相似文献
7.
Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials 总被引:6,自引:0,他引:6
This study was aimed at the development of economical methods for higher yields of biosurfactant by suggesting the use of low-cost raw materials. Two oil-degrading strains, Pseudomonas aeruginosa GS9-119 and DS10-129, were used to optimize a substrate for maximum rhamnolipid production. Among the two strains, the latter produced maxima of 4.31, 2.98, and 1.77 g/L rhamnolipid biosurfactant using soybean oil, safflower oil, and glycerol, respectively. The yield of biosurfactant steadily increased even after the bacterial cultures reached the stationary phase of growth. Characterization of rhamnolipids using mass spectrometry revealed the presence of dirhamnolipids (Rha-Rha-C(10)-C(10)). Emulsification activity of the rhamnolipid biosurfactant produced by P. aeruginosa DS10-129 was greater than 70% using all the hydrocarbons tested, including xylene, benzene, hexane, crude oil, kerosene, gasoline, and diesel. P. aeruginosa GS9-119 emulsified only hexane and kerosene to that level. 相似文献
8.
P. Sudhakar Babu A. N. Vaidya A. S. Bal Rajesh Kapur Asha Juwarkar P. Khanna 《Biotechnology letters》1996,18(3):263-268
Summary Batch kinetic studies were carried out on rhamnolipid biosurfactant production from synthetic medium, industrial wastes viz. distillery and whey waste as substrates. The results indicated that the specific growth rates ( max) and specific product formation rates (V max) from both the wastes are comparatively better than the synthetic medium, revealing that both the industrial wastes (distillery and whey) can be successfully utilized as substrates for biosurfactant production. 相似文献
9.
Dextrose enhanced the growth of P. aeruginosa but suppressed the biosynthesis of pyocyanine. The preformed pigment could be released from dead cells. Pigmentation was not correlated directly with number of viable organisms in the culture. High concentration of maltose likewise inhibited pyocyanine production. Maltose contained in medium used for pyocyanine production by P. aeruginosa should be kept in low concentration or omitted. 相似文献
10.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. 相似文献
11.
Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors 总被引:1,自引:0,他引:1
Luis H. Guerra-Santos Othmar Käppeli Armin Fiechter 《Applied microbiology and biotechnology》1986,24(6):443-448
Summary Continuous culture studies with Pseudomonas aeruginosa were performed in order to establish nutritional and environmental conditions necessary for high production of biosurfactants. Empirical adjustments of the mineral medium formulation showed that better yields of the active compounds, rhamnolipids, are obtained by minimizing the concentration of the respective salts of magnesium, calcium, potassium, sodium and the trace elements. Improvements in performance were more evident when the intial substrate concentration, glucose, was increased up to 73 gl-1. Further, the ranges for pH (6.2 to 6.4) and temperature (32° to 34°C) that yield high biosurfactant biosynthesis were established. Concerning the physiological state of the microorganism, rhamnolipid formation was restricted to specific growth rates lower than D=0.14 h-1. By applying the conditions elaborated up to 300 mg rhamnose l-1 h-1 (equivalent to 685 mg rhamnolipid l-1 h-1) were obtained in a continuous production process. 相似文献
12.
The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers. 相似文献
13.
During the last decades, whole‐cell immobilization has been used successfully in many bioprocesses. In particular, it is aimed at implementing continuous production processes, reaching higher production rates, and reusing the biocatalyst. In some cases, effective retention of immobilizates in the bioprocess is not feasible by membranes or sieves due to pore plugging or undesired losses of immobilizates. In the present publication, it is reported about the investigation of magnetic immobilizates of Pseudomonas aeruginosa for application in continuous biosurfactant production of rhamnolipids by foam fractionation and retention of entrained immobilizates by high‐gradient magnetic separation from foam. Different materials and methods were tested with respect to important parameters, such as stability, diffusion properties or magnetic separation. Good magnetic separation of immobilizates was achieved at 5% (w/w) magnetite loading. Best results in terms of homogeneous embedding, good diffusion properties, and stability enhancement vis‐à‐vis pure alginate beads was achieved with alginate beads with embedded Bayoxide® magnetite or MagPrep® silica particles. Although polyurethane immobilizates showed higher stabilities compared with alginate beads, rhamnolipid diffusion in immobilizates was superior in magnetic alginate beads. Regarding bead production, smaller immobilizates were achieved with suspension polymerization compared to droplet extrusion by the JetCutting® technology. In total, magnetic immobilizates are a promising tool for an easier handling of biocatalysts in a continuous biological production process, but they have to be adapted to the current production task.© 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
14.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. 相似文献
15.
16.
Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1 总被引:1,自引:0,他引:1
Oluwafemi S. Obayori Matthew O. Ilori Sunday A. Adebusoye Ganiyu O. Oyetibo Ayodele E. Omotayo Olukayode O. Amund 《World journal of microbiology & biotechnology》2009,25(9):1615-1623
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant
production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling
time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced
biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production
was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C
and pH 2.0. 相似文献
17.
18.
Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614 总被引:1,自引:0,他引:1
Monteiro SA Sassaki GL de Souza LM Meira JA de Araújo JM Mitchell DA Ramos LP Krieger N 《Chemistry and physics of lipids》2007,147(1):1-13
Pseudomonas aeruginosa DAUPE 614 produced rhamnolipids (3.9gL(-1)) when cultivated on a medium containing glycerol and ammonium nitrate. These rhamnolipids reduced the surface tension of water to 27.3mNm(-1), with a critical micelle concentration of 13.9mgL(-1). The maximum emulsification index against toluene was 86.4%. The structure of the carbohydrate moiety of the glycolipid was determined by gas chromatography-mass spectroscopy (GC-MS) analysis allied to electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR) 1D, 2D (13)C, (1)H spectroscopy. The hydroxyl fatty acids were analyzed by GC-MS as hydroxy-acetylated fatty acid methyl ester derivatives. The positions of the fatty acids in the lipid moiety were variable, with 6 mono-rhamnolipid homologues (Rha-C(10)-C(10); Rha-C(10)-C(8); Rha-C(8)-C(10); Rha-C(10)-C(12:1); Rha-C(12)-C(10); Rha-C(10)-C(12)) and 6 di-rhamnolipid homologues (Rha(2)-C(10)-C(10); Rha(2)-C(10)-C(8); Rha(2)-C(8)-C(10); Rha(2)-C(10)-C(12:1); Rha(2)-C(12)-C(10); Rha(2)-C(10)-C(12)). The ratio of Rha(2)-C(10)-C(10) to Rha-C(10)-C(10) was higher than has been reported in previous studies. Our methodology allowed us to distinguish between the isomeric pairs Rha-C(10)-C(8)/Rha-C(8)-C(10), Rha-C(10)-C(12)/Rha-C(12)-C(10), Rha(2)-C(10)-C(8)/Rha(2)-C(8)-C(10) and Rha(2)-C(12)-C(10)/Rha(2)-C(10)-C(12). For each isomeric pair, the congener with the shorter chain adjacent to the sugar was always more abundant than the congener with longer chain. 相似文献
19.
S. Arino R. Marchal J. -P. Vandecasteele 《Applied microbiology and biotechnology》1996,45(1-2):162-168
A glycolipid-producing bacterium, Pseudomonas aeruginosa GL1, was isolated from the soil contaminated with polycyclic aromatic hydrocarbons (PAH) from a manufactured gas plant. The
glycolipid produced was characterized in detail by chromatographic procedures as a mixture of four rhamnolipids, consisting
of different associations of rhamnose and hydroxy fatty acids: the main component was monorhamnosyl di-3-hydroxydecanoic acid.
The rhamnolipid composition presented marked analogies with a defined part of P. aeruginosa outer membrane lipopolysaccharides (lipopolysaccharide band A). Rhamnolipid production was stimulated under conditions of
nitrogen limitation. Glycerol yielded higher productions than did hydrophobic carbon sources. Cell hydrophobicity decreased
during growth on glycerol and on n-hexadecane whereas glycolipid production increased. P. aeruginosa GL1 was found to be unable to grow on a variety of 2, 3 and 4 cycle PAH. However, it was shown to persist after at least
12 subcultures in a bacterial population growing on a mixture of pure PAH, suggesting a physiological role for rhamnolipid
as a means to enhance PAH availability in a mutualistic PAH-degrading bacterial community.
Received: 4 July 1995/Received revision: 7 September 1995/Accepted: 13 September 1995 相似文献
20.
P A Castric 《Journal of bacteriology》1977,130(2):826-831
Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [14C]threonine to [14C]glycine. H14CN is produced with low dilution of label from either [1-14C]glycine or [2-14C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2-14C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed. 相似文献