首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that epidermal growth factor (EGF) synergizes with various extracellular matrix components in promoting the migration of B82L fibroblasts expressing wild-type EGF receptors and that functional EGF receptors are critical for the conversion of B82L fibroblasts to a migratory cell type (). In the present study, we examined the effects of platelet-derived growth factor (PDGF) on the motility of B82L fibroblasts using a microchemotaxis chamber. We found that PDGF can enhance fibronectin-induced migration of B82L fibroblasts expressing wild-type EGF receptors (B82L-clone B3). However, B82L cells that lack the EGF receptor (B82L-parental) or that express an EGF receptor that is kinase-inactive (B82L-K721M) or C-terminally truncated (B82L-c'973) exhibit little PDGF-stimulated migration. In addition, none of these three cell lines exhibit the capacity to migrate to fibronectin alone. These observations indicate that, similar to cell migration toward fibronectin, PDGF-induced cell migration of B82L fibroblasts is augmented by the expression of an intact EGF receptor kinase. The loss of PDGF-stimulated motility in B82L cells that do not express an intact EGF receptor does not appear to result from a gross dysfunction of PDGF receptors, because ligand-stimulated tyrosine phosphorylation of the PDGF-beta receptor and the activation of mitogen-activated protein kinases are readily detectable in these cells. Moreover, an interaction between EGF and PDGF receptor systems is supported by the observation that the EGF receptor exhibits an increase in phosphotyrosine content in a time-dependent fashion upon the addition of PDGF. Altogether, these studies demonstrate that the expression of EGF receptor is critical for PDGF-stimulated migration of murine B82L fibroblasts and suggest a role for the EGF receptor downstream of PDGF receptor activation in the signaling events that lead to PDGF-stimulated cell motility.  相似文献   

2.
Laminin can influence the adhesion, differentiation, and motility of motility of several cell types, including epithelial and neural cells. In addition, laminin, which contains an epidermal growth factor (EGF)-like motif, can stimulate DNA synthesis in fibroblasts possessing the EGF receptor, but laminin does not compete for EGF binding. To further investigate laminin action in fibroblasts, and the relationship between laminin and EGF receptor function, we have developed a system wherein cells containing laminin-binding activity were cloned from a mouse fibroblast cell line (B82L-wt) that cannot adhere to laminin but that have been transfected with the wild-type human EGF receptor. Although only the isolated clones can efficiently attach to laminin-coated plates, all the cells can adhere to plastic, fibronectin, and collagen I, and all exhibit comparable levels of cell surface-associated laminin. Ligand-binding assays showed that the cells with laminin attachement activity possess high-affinity EGF binding (Kd ~ 0.4 nM), and all express a similar level of the human EGF receptor. However, when compared to the B82L-wt cells, the cells with laminin-binding activity exhibit altered morphology, anchorage-independent growth, and motility. Specifically, the morphology of the fibroblasts possessing laminin binding activity appears more elongated and they spread more-extensively on plastic plates. Analysis of their growth in soft agar revealed that the clones have a 2-5-fold increase in colony formation in comparison to the B82L-wt cells. The cells possessing laminin attachment ability also exhibit laminin-induced motility, and this movement is directional (chemotaxis) rather than random (chemokinesis), indicating functional laminin receptors and signaling pathways. To examine the specific laminin receptors involved in these effects, the influence of anti-integrin subunit antibodies on cell adhesion and migration was evaluated. These studies showed that an anti-α6 integrin antibody can completely inhibit the clonal cells' attachment and migration to laminin, and anti-α6 immunoblots revealed that only the clones express measurable levels of α6. These data indicate that α6-containing integrins contribute to the lamininmediated attachment and motility of these clones and that this system may also influence the morphology and anchorage-independent growth of these fibroblasts. In addition, these cells provide a unique system for examining the interaction between EGF and laminin receptor action. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Summary The influence of the extracellular matrix (ECM) glycoproteins collagen, IV laminin (LN), and fibronectin (FN) on the in vitro migration of epithelial cells was studied using the ECM migration track method (4) with preparations immunostained for LN and FN. The locomotion of rat liver epithelial cells stimulated to migrate in serum-free medium by epidermal growth factor (EGF) in the presence of the protein per cm2. Neither LN nor collagen IV decreased the number of migrating cells, indicating that the inhibition is a specific effect of fibronectin. The data also indicate that the FN-mediated inhibition of migration is an additional and not alternative mechanism to the well-established contact inhibition of locomotion (1) which also occurs in liver epithelial cell cultures. The system is being used for a further analysis of the factors that influence migration of normal and neoplastic epithelial cells and the biochemical mechanisms underlying the migration reaction. Editor’s Statement This paper describes new and heretofore neglected aspects of EGF and fibronectin action on the migratory behavior of cultured cells. Gordon H. Sato  相似文献   

4.
We previously showed that, in the context of thymic epithelial cells, thymocyte migration is partially controlled by extracellular matrix (ECM)-mediated interactions. Herein we evaluated whether these interactions could be involved in cell migration related events in the context of non-epithelial cells of the thymic microenvironment, the phagocytic cells of the thymic reticulum (PTR). We first showed, by immunocytochemistry, cytofluorometry, and RT-PCR, that PTR produce ECM components, including fibronectin and laminin, and express the corresponding integrin-type receptors, VLA-4, VLA-5, and VLA-6. Thymocytes adhere onto PTR monolayers, with immature CD4(+)CD8(+) cells being predominant. Importantly, such an adhesion is partially mediated by ECM ligands and receptors, since it was impaired by anti-ECM or anti-ECM receptor antibodies. Conjointly, our data reveal that the ECM-dependence for thymocyte adhesion onto the thymic microenvironment is not restricted to the epithelial cells, being also seen when they encounter non-epithelial phagocytic cells.  相似文献   

5.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

6.
Wounding corneal epithelium establishes a laterally oriented, DC electric field (EF). Corneal epithelial cells (CECs) cultured in similar physiological EFs migrate cathodally, but this requires serum growth factors. Migration depends also on the substrate. On fibronectin (FN) or laminin (LAM) substrates in EF, cells migrated faster and more directly cathodally. This also was serum dependent. Epidermal growth factor (EGF) restored cathodal-directed migration in serum-free medium. Therefore, the hypothesis that EGF is a serum constituent underlying both field-directed migration and enhanced migration on ECM molecules was tested. We used immunofluorescence, flow cytometry, and confocal microscopy and report that 1) EF exposure up-regulated the EGF receptor (EGFR); so also did growing cells on substrates of FN or LAM; and 2) EGFRs and actin accumulated in the cathodal-directed half of CECs, within 10 min in EF. The cathodal asymmetry of EGFR and actin staining was correlated, being most marked at the cell-substrate interface and showing similar patterns of asymmetry at various levels through a cell. At the cell-substrate interface, EGFRs and actin frequently colocalized as interdigitated, punctate spots resembling tank tracks. Cathodal accumulation of EGFR and actin did not occur in the absence of serum but were restored by adding ligand to serum-free medium. Inhibition of MAPK, one second messenger engaged by EGF, significantly reduced EF-directed cell migration. Transforming growth factor beta and fibroblast growth factor also restored cathodal-directed cell migration in serum-free medium. However, longer EF exposure was needed to show clear asymmetric distribution of the receptors for transforming growth factor beta and fibroblast growth factor. We propose that up-regulated expression and redistribution of EGFRs underlie cathodal-directed migration of CECs and directed migration induced by EF on FN and LAM.  相似文献   

7.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300-1000 micrograms/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300-1000 micrograms/ml), which mimics a binding domain of LM, and alpha-lactalbumin (1-10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and alpha-lactalbumin inhibited cell migration 50%. Antibodies against integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

8.
The extracellular matrix of rat pheochromocytoma PC12 cells was shown by indirect immunofluorescence to consist of a network of fibronectin. The matrix did not contain laminin. The cells synthesized messenger RNA for fibronectin, laminin B2, and s-laminin but not for entactin or the B1 and A chains of laminin. Laminin B2 but not laminin B1 was detectable in the culture medium and in cell lysates. A full-length cDNA clone for the B1 chain of laminin was constructed in the plasmid p-444, which contains the neomycin-resistance marker and human beta-actin promoter. PC12 cells were transfected with this recombinant plasmid, and stable neomycin-resistant clones were isolated and characterized. Clones that synthesized laminin B1 messenger RNA were found to deposit a laminin-containing matrix. In many of these clones the deposition of the fibronectin matrix was greatly diminished. The laminin matrix was predominantly localized in the intercellular spaces forming a honeycomb pattern. The morphology of the laminin-synthesizing transfected cells was markedly different from the parental cells. The cells grew in tight clusters that were resistant to dissociating agents. It is concluded that the B1 chain of laminin contains information that is required for the formation of a stable laminin-containing extracellular matrix network either by interaction with cell surface receptors or other extracellular matrix components. Furthermore, expression of the laminin B1 gene may be a central regulatory point in determining extracellular matrix composition during embryogenesis.  相似文献   

9.
Somatic cell hybrids were obtained with electric pulse by fusion of human epithelial HeLa cells derived from a carcinoma of the uterine cervix and mouse fibroblasts 3T3.4E, deficient in thymidine kinase. Hybrids were selected and propagated in HAT media; some experiments were carried out in medium with delipidized serum. The hybrid cells were characterized by indirect immunofluorescence with a biotin-streptavidin system using a panel of nine monoclonal antibodies specific for membrane and cytoplasmic antigens of parental cells: intermediate filaments (keratins and vimentin), HLA class 1 (beta 2-microglobulin), cell activation (EGF and transferrin receptors) and cellular adhesion (fibronectin and laminin). All of these antigens were expressed in HeLa cells cultured in conventional medium or with delipidized serum. Conversely mouse fibroblasts contained only vimentin, fibronectin and laminin. All the parental antigens were present in first passage hybrid cells cultured in conventional medium. Vimentin, fibronectin and laminin were maintained in fourth passage hybrids whereas keratins, beta 2-microglobulin, EGF and transferrin receptors were no longer detected. When propagated in medium with delipidized serum, hybrid cells re-expressed these antigens after 5 days of culture. These findings suggest that the reexpression of HeLa cell antigens in hybrid cells was related to deficiency in vitamin A.  相似文献   

10.
《The Journal of cell biology》1984,98(4):1474-1480
The migration of tumor cells through basement membranes and extracellular matrices is an integral component of tumor invasion and metastasis. Laminin and fibronectin are two basement membrane- and extracellular matrix-associated noncollagenous glycoproteins that have been shown to promote both cell adhesion and motility. Purified preparations of laminin and fibronectin stimulated the directed migration of B16 murine metastatic melanoma cells in vitro as assessed in modified Boyden chambers. The stimulation of migration occurred over a concentration range of 1-100 micrograms/ml of laminin or fibronectin, with a peak response occurring between 12.5 and 25 micrograms/ml. The maximal response of these cells was 80-120-fold higher than control migration. Affinity-purified antibody preparations specifically abrogated the migration of these cells in response to the respective proteins. Tumor cells in suspension were preincubated in physiologic levels of plasma fibronectin prior to assay to partially mimic what occurs when a metastasizing cell is in the blood stream. This preincubation with plasma fibronectin had no effect on the subsequent migration of cells in response to either laminin or fibronectin. Furthermore, experiments using filters precoated with fibronectin or laminin indicated that these cells could migrate by haptotaxis to these two proteins. We conclude that tumor cell migration in response to such noncollagenous adhesive glycoproteins could be an important aspect in the invasion and metastasis of certain malignant cell types.  相似文献   

11.
We have developed two rat mAbs that recognize different subunits of the human fibroblast fibronectin receptor complex and have used them to probe the function of this cell surface heterodimer. mAb 13 recognizes the integrin class 1 beta polypeptide and mAb 16 recognizes the fibronectin receptor alpha polypeptide. We tested these mAbs for their inhibitory activities in cell adhesion, spreading, migration, and matrix assembly assays using WI38 human lung fibroblasts. mAb 13 inhibited the initial attachment as well as the spreading of WI38 cells on fibronectin and laminin substrates but not on vitronectin. Laminin-mediated adhesion was particularly sensitive to mAb 13. In contrast, mAb 16 inhibited initial cell attachment to fibronectin substrates but had no effect on attachment to either laminin or vitronectin substrates. When coated on plastic, both mAbs promoted WI38 cell spreading. However, mAb 13 (but not mAb 16) inhibited the radial outgrowth of cells from an explant on fibronectin substrates. mAb 16 also did not inhibit the motility of individual fibroblasts on fibronectin in low density culture and, in fact, substantially accelerated migration rates. In assays of the assembly of an extracellular fibronectin matrix by WI38 fibroblasts, both mAbs produced substantial inhibition in a concentration-dependent manner. The inhibition of matrix assembly resulted from impaired retention of fibronectin on the cell surface. Treatment of cells with mAb 16 also resulted in a striking redistribution of cell surface fibronectin receptors from a streak-like pattern to a relatively diffuse distribution. Concomitant morphological changes included decreases in thick microfilament bundle formation and reduced adhesive contacts of the streak-like and focal contact type. Our results indicate that the fibroblast fibronectin receptor (a) functions in initial fibroblast attachment and in certain types of adhesive contact, but not in the later steps of cell spreading; (b) is not required for fibroblast motility but instead retards migration; and (c) is critically involved in fibronectin retention and matrix assembly. These findings suggest a central role for the fibronectin receptor in regulating cell adhesion and migration.  相似文献   

12.
GH3B6 cells, a rat pituitary tumor cell line, synthesize and secrete large amounts of prolactin (PRL) in vitro. In the present work, we evaluated the capacity of these cells to express extracellular matrix (ECM) components and receptors in vitro. The expression of laminin (LN), fibronectin (FN) and type IV collagen (CIV) was investigated by immunofluorescence assays. In comparison to PRL distribution, where around 50-70% of the cells contained PRL concentrated in the Golgi region, a variable immunolabeling for the three ECM components could be observed in the majority of GH3B6 cells. Importantly, this pattern was not modified when cells were cultured in the presence of 30 nM thyroliberin (TRH). The expression of the ECM receptors: alpha5beta1 (FN receptor), alpha6beta1 (LN receptor) and CD44 (hyaluronic acid receptor) could be demonstrated by cytofluorometric analysis. Using biochemical procedures, we analyzed the synthesis and secretion of glycosaminoglycans (GAGs). The cells synthesized and secreted mainly heparan sulfate (75%) with a minor amount of chondroitin sulfate/dermatan sulfate. In an attempt to evaluate the individual contribution of the ECM components to influence cell morphology and PRL distribution in vitro, GH3B6 cells were cultivated separately on LN, FN and CIV substrates. Under all conditions, it was possible to observe an increase of cell adherence to the substrate, accompanied with changes of cellular morphology, characterized by the appearance of cytoplasmatic processes. However, no changes on PRL distribution could be observed. Our results suggest that endocrine tumor cell lines are involved in synthesis of ECM components and receptors.  相似文献   

13.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

14.
We have previously shown that cell surface galactosyltransferase (GalTase) mediates cell spreading and migration on basal lamina matrices by binding N-linked oligosaccharide substrates within laminin. In this study we have examined the distribution and expression of cell surface GalTase during mesenchymal cell migration on various extracellular matrices. Antisera raised against affinity-purified beta 1,4 GalTase, as well as anti-GalTase Fab fragments, inhibited cell migration on laminin-containing matrices, whereas under identical conditions, anti-GalTase IgG had no effect on the rate of cell migration on fibronectin substrates. Cells migrating on laminin had three times the level of surface GalTase, assayed by 125I-antibody binding and by direct enzyme assay, than similar cells migrating on fibronectin. On the other hand, total cellular GalTase, assayed either enzymatically or by Northern blot analysis, was similar when cells were grown on laminin or fibronectin. The laminin-dependent increase in surface GalTase was due to its expression onto the leading and trailing edges of migrating cells in association with actin-containing microfilaments assayed by double-label indirect immunofluorescence. On stationary cells, surface GalTase levels were low, but as cells began to migrate on laminin GalTase became polarized to the growing lamellipodia. GalTase was not detectable on lamellipodia or filopodia when cells migrated on fibronectin substrates. These results show that laminin-containing matrices induce the stable expression of GalTase onto cell lamellipodia and filopodia where it mediates subsequent cell spreading and migration. Since fibronectin was unable to induce GalTase expression onto lamellipodia, these studies also suggest that the extracellular matrix can selectively influence which intracellular components are maintained on the cell surface.  相似文献   

15.
Invasion is the key requirement for cancer metastasis. Expression of β1,6 branched N-oligosaccharides associated with invasiveness, has been shown to promote adhesion to most Extra Cellular Matrix (ECM) and basement membrane (BM) components and haptotactic motility on ECM (fibronectin) but attenuate it on BM (laminin/matrigel) components. To explore the mechanism and to evaluate the significance of these observations in terms of invasion, highly invasive B16BL6 cells were compared with the parent (B16F10) cells or B16BL6 cells in which glycosylation was inhibited. We demonstrate that increased adhesion to matrix components induced secretion of MMP-9, important for invasion. Further, both the subunits of integrin receptors for fibronectin (α5β1) and laminin (α3β1) on B16BL6 cells were shown to carry these oligosaccharides. Although, glycosylation of receptors had no effect on their surface expression, it had same differential effect on cell spreading as haptotactic motility. Absence of correlation between invasiveness and expression of most tetraspanins (major regulators of integrin function) hints at an alternate mechanism. Here we show that glycosylation on α3β1 impedes its association with CD151 and modulates spreading and motility of cells apparently to reach an optimum required for invasion of BM. These studies demonstrate the complex mechanisms used by cancer cells to be invasive.  相似文献   

16.
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.  相似文献   

17.
We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

18.
19.
The invasion of neoplastic cells into healthy brain tissue is a pathologic hallmark of gliomas and contributes to the failure of current therapeutic modalities (surgery, radiation and chemotherapy). Transformed glial cells share the common attributes of the invasion process, including cell adhesion to extracellular matrix (ECM) components, cell locomotion, and the ability to remodel extracellular space. However, glioma cells have the ability to invade as single cells through the unique environment of the normal central nervous system (CNS). The brain parenchyma has a unique composition, mainly hyaluronan and is devoid of rigid protein barriers composed of collagen, fibronectin and laminin. The integrins and the hyaluronan receptor CD44 are specific adhesion receptors active in glioma-ECM adhesion. These adhesion molecules play a major role in glioma cell-matrix interactions because the neoplastic cells use these receptors to adhere to and migrate along the components of the brain ECM. They also interact with the proteases secreted during glioma progression that degrade ECM allowing tumor cells to spread and diffusely infiltrate the brain parenchyma. The plasminogen activators (PAs), matrix metalloproteinases (MMPs) and lysosomal cysteine peptidases called cathepsins are also induced during the invasive process. Understanding the mechanisms of tumor cell invasion is critical as it plays a central role in glioma progression and failure of current treatment due to tumor recurrence from micro-disseminated disease. This review will focus on the impact of microregional heterogeneity of the ECM on glioma invasion in the normal adult brain and its modifications in tumoral brain.  相似文献   

20.
Tenascin-C, a six-armed extracellular matrix glycoprotein, is expressed in a temporally and spatially restricted pattern during carcinogenesis and invasion or metastasis of carcinoma cells in association with stromal-epithelial interactions. The human epidermoid carcinoma-derived cell lines, A431 and HEp-2, which do not express tenascin-C by themselves in vitro, do express tenascin-C after transplantation into nude mice, and transforming growth factor β1 (TGF-β1) induces them to express tenascin-C in vitro. Epidermal growth factor (EGF) induced tenascin-C in these cells more effectively (about 3.5-fold greater) than did TGF-β1. Hepatocyte growth factor (HGF) and platelet-derived growth factor (PDGF) had little effect on the induction of tenascin-C. EGF also induced other extracellular matrix components, fibronectin and laminin. Tenascin-C was also induced when the carcinoma cells were co-cultured with embryonic fibroblasts from mice which were homozygous for a null mutation in the tenascin-C gene, or when the conditioned medium from these cells was added. The induction of tenascin-C in the co-culture was reduced by treating the cells with antibodies against EGF or its receptor. The addition of EGF caused both cell types to disrupt their cytoskeleton and focal contacts as evidenced by the loss of stress fibers and vinculin plaques. EGF did neither induce tenascin-C nor affect the morphology in tenascin-C-nonproducing A549 carcinoma cells, which did not produce tenascin-C after transplantation. Thus, EGF induces tenascin-C in tenascin-C-nonproducing human carcinoma cells through EGF receptors. Furthermore, in stromalepithelial interactions, the diffusible factor EGF participates in the induction of human tenascin-C in these cells through EGF receptors. © 1995 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号