首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycloleucine is in vitro a competitive inhibitor of methionine adenosyltransferase, an enzyme involved in S-adenosylmethionine biosynthesis. The physiological effects of this drug on baby hamster kidney cells have been studied. When cells are grown in a medium containing 10 μM methionine, cycloleucine is an inhibitor of cell proliferation; high concentrations of methionine are able to withdraw this inhibition suggesting that cycloleucine toxicity is related to methionine metabolism. The drug does not primarily affect methionine uptake and its subsequent use for protein biosynthesis. Cycloleucine toxicity is correlated with a block of SAM biosynthesis and nucleic acids methylations. The actions of cycloleucine on progression in the cell cycle and DNA, RNA and protein biosynthesis are studied. The implications of these results are discussed.  相似文献   

2.
The uptake of various amino acids into Streptomyces hydrogenans grown in chemostatically and turbidostatically controlled steady state cultures has been investigated. A close correlation between transport capacity and the growth rates of the cells was found. As shown by kinetic analysis, the increased transport is due to elevated maximum uptake rates, the apparent Michaelis constants remaining unchanged. Analysis of the unidirectional fluxes of cycloleucine revealed that not only the influx is raised as the growth rate is increased but also the efflux. Hence, the conclusion is drawn that the growth-rate dependent modulation of transport capacity is, at least, partially due to the variation of the concentration of active transport components. Since the cells were grown in the absence of external amino acids the results suggest that amino acid transport into S. hydrogenans is under the control of endogenous effectors.List of Abbreviations AIB 2-aminoisobutyric acid - Cycloleucine 1-aminocyclopentane-1-carboxylic acid  相似文献   

3.
Uptake of 14C-labelled amino acids into single oocytes was determined using 3H-labelled choline to correct for extracellular space. Cycloleucine, a non-metabolisable amino acid sharing an entry mechanism with methionine and phenylalanine, was transported in accord with Michaelis-Menten kinetics. At extracellular levels below 8 mM, cycloleucine was concentrated within the oocyte. The proportion of sheep oocytes having a functional amino acid transport system (i.e. cycloleucine flux > 1 nmole cm−2 h−1) was highest in pre-ovulatory follicles (97%), and lowest in atretic follicles (59%). Amino acid fluxes in functional germinal vesicle oocytes were similar at all stages of development studied. An increase in Vmax but not Km during meiotic maturation resulted in a doubling of amino acid uptake in metaphase II oocytes. These increased fluxes were under gonadotropic regulation and were independent of nuclear maturation. Amino acid uptake by mouse oocytes was approximately half that measured in sheep oocytes.  相似文献   

4.
S-Adenosyl-l-methionine (SAM) is the principal biological methyl donor. Methionine adenosyltransferase (MAT) catalyzes the only reaction that generates SAM. Hepatocytes were treated with cycloleucine, an inhibitor of MAT, to evaluate whether hepatocytes enriched in cytochrome P450 2E1 (CYP2E1) were more sensitive to a decline in SAM. Cycloleucine decreased SAM and glutathione (GSH) levels and induced cytotoxicity in hepatocytes from pyrazole-treated rats (with an increased content of CYP2E1) to a greater extent as compared to hepatocytes from saline-treated rats. Apoptosis caused by cycloleucine in pyrazole hepatocytes appeared earlier and was more pronounced than control hepatocytes and could be prevented by incubation with SAM, glutathione reduced ethyl ester and antioxidants. The cytotoxicity was prevented by treating rats with chlormethiazole, a specific inhibitor of CYP2E1. Cycloleucine induced greater production of reactive oxygen species (ROS) in pyrazole hepatocytes than in control hepatocytes, and treatment with SAM, Trolox, and chlormethiazole lowered ROS formation. In conclusion, lowering of hepatic SAM levels produced greater toxicity and apoptosis in hepatocytes enriched in CYP2E1. This is due to elevated ROS production by CYP2E1 coupled to lower levels of hepatoprotective SAM and GSH. We speculate that such interactions e.g. induction of CYP2E1, decline in SAM and GSH may contribute to alcohol liver toxicity.  相似文献   

5.
Previous studies show that treatment with a polyunsaturated fatty acid, arachidonic acid (AA), or high concentrations of cycloleucine, an inhibitor of methionine adenosyltransferase (MAT), which lowers levels of S-adenosyl-L-methionine (SAM), increased toxicity in hepatocytes from pyrazole-treated rats which expressed high levels of cytochrome P450 2E1 (CYP2E1). In this study, I used concentrations of cycloleucine or AA, which by themselves do not produce any toxicity, to evaluate whether a decrease in SAM sensitizes hepatocytes to AA toxicity, especially in hepatocytes enriched in CYP2E1. Levels of SAM were lower by 50% in hepatocytes from pyrazole- compared to saline-treated rats. Cycloleucine treatment caused a 50% decline in SAM levels with both hepatocyte preparations and SAM levels were lowest in the pyrazole-treated hepatocytes. The combination of cycloleucine plus AA produced some toxicity and apoptosis in hepatocytes from saline-treated rats but increased toxicity and apoptosis was found in the hepatocytes from pyrazole-treated rats. Cytotoxicity could be prevented by incubation with SAM, the antioxidant trolox, and the mitochondrial permeability transition inhibitor trifluoperazine. The enhanced cytotoxicity could also be protected by treating rats with chlormethiazole, a specific inhibitor of CYP2E1, thus validating the role of CYP2E1. Cycloleucine plus AA treatment elevated production of reactive oxygen species (ROS) and lipid peroxidation to greater extents with the hepatocytes from pyrazole-treated rats than that from the saline-treated rats. I hypothesize that increased production of ROS by hepatocytes enriched in CYP2E1 potentiates AA-induced lipid peroxidation and toxicity when hepatoprotective levels of SAM are lowered. Such interactions, e.g. induction of CYP2E1, decline in SAM and polyunsaturated fatty acid-induced lipid peroxidation, may contribute to alcohol-induced liver injury.  相似文献   

6.
Cycloleucine (1-aminocyclopentane-1-carboxylic acid) is a potent inhibitor of RNA methylation in B77 sarcoma virus-infected chicken embryo fibroblasts. Under conditions where 40 mM cycloleucine is present, internal N-6-methyladenosine and 5'-terminal can 2'-O-ribose methylations of poly(A)+ RNA are inhibited greater than 90%. The methylation of the 5'-terminal 7-methylguanosine, however, does not appear to be significantly affected. The poly(A)+ RNA synthesized in cycloleucine-treated cells is transported from the nucleus to the cytoplasm and associates with polyribosomes at rates comparable to poly(A)+ RNA in untreated cells. On the other hand, the transport and utilization of newly synthesized ribosomal RNA in cycloleucine-treated cells is impaired, and the accumulation of mature 18 S and 28 S rRNA is reduced.  相似文献   

7.
K Dimock  C M Stolzfus 《Biochemistry》1978,17(17):3627-3632
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases.  相似文献   

8.
Local cerebral glucose utilization (LCGU), as measured by the 2-deoxy-D-[1-14C]glucose technique, reflects local cerebral functional activity. In an effort to elucidate mechanisms of the encephalopathy associated with deficiency of vitamin B12, LCGU was determined in two recently described models of effective B12 deficiency: exposure of rats to subanesthetic doses of nitrous oxide (N2O) and/or administration of 1-amino-cyclopentane-1-carboxylic acid (cycloleucine). Our results show that exposure of adult rats to N2O depresses LCGU selectively in cortical, auditory, and limbic structures, in association with a depression in whole-brain activities of the vitamin B12-dependent methyltetrahydrofolate-homocysteine methyl-transferase (EC 2.1.1.13, methionine synthetase). Cycloleucine has no discernible effect on LCGU in the adult rat and does not change the cerebral activity of methionine synthetase.  相似文献   

9.
Interleukin-6 (IL-6) is a multifunctional cytokine having primarily anti-apoptotic and anti-inflammatory effects. Recent reports have documented that IL-6 plays a key role in liver regeneration. Intracellular deficiency of S-adenosylmethionine (SAMe) is a hallmark of toxin-induced liver injury. Although the administration of exogenous SAMe attenuates liver injury, its mechanisms of action are not fully understood. Here we investigated the effects of exogenous SAMe on IL-6 production in monocytes and Kupffer cells. RAW 264.7 cells, a murine monocyte cell line, and isolated rat Kupffer cells were stimulated with lipopolysaccharide (LPS) in the absence or presence of exogenous SAMe. IL-6 production was assayed by ELISA and intracellular SAMe concentrations were measured by HPLC. We have found that exogenous SAMe administration enhanced both IL-6 protein production and gene expression in LPS-stimulated monocytes and Kupffer cells. Cycloleucine (CL), an inhibitor for extrahepatic methionine adenosyltransferases (MAT), inhibited LPS-stimulated IL-6 production. The enhancement of LPS-stimulated IL-6 production by SAMe was inhibited by ZM241385, a specific antagonist of adenosine (A2) receptor. Our results demonstrate that SAMe administration may exert its anti-inflammatory and hepatoprotective effects, at least in part, by enhancing LPS-stimulated IL-6 production.  相似文献   

10.
Inanobe A  Furukawa H  Gouaux E 《Neuron》2005,47(1):71-84
Partial agonists produce submaximal activation of ligand-gated ion channels. To address the question of partial agonist action at the NR1 subunit of the NMDA receptor, we performed crystallographic and electrophysiological studies with 1-aminocyclopropane-1-carboxylic acid (ACPC), 1-aminocyclobutane-1-carboxylic acid (ACBC), and 1-aminocyclopentane-1-carboxylic acid (cycloleucine), three compounds with incrementally larger carbocyclic rings. Whereas ACPC and ACBC partially activate the NMDA receptor by 80% and 42%, respectively, their cocrystal structures of the NR1 ligand binding core show the same degree of domain closure as found in the complex with glycine, a full agonist, illustrating that the NR1 subunit provides a new paradigm for partial agonist action that is distinct from that of the evolutionarily related GluR2, AMPA-sensitive receptor. Cycloleucine behaves as an antagonist and stabilizes an open-cleft conformation. The NR1-cycloleucine complex forms a dimer that is similar to the GluR2 dimer, thereby suggesting a conserved mode of subunit-subunit interaction in AMPA and NMDA receptors.  相似文献   

11.
12.
Abstract. The control of pattern formation, cell differentiation and cell proliferation in hydroids involves inhibitory signals. In an attempt to identify their chemical nature, compounds from coelenterates which interfere with metamorphosis and pattern-forming processes in Hydractinia and Eirene were isolated. The most strongly metamorphosis-inhibiting compounds were determined to be N -methylpicolinic acid (homarine), N -methylnicotinic acid (trigonelline) and N -trimethylglycine (betaine). The overal concentration of these compounds within tissues is in the range of several millimoles, but micromolar quantities were found to affect development. Thus, the substances must be mainly present in a stored or an inactivated form. The compounds appear to exert their influence by transfering methyl groups to as yet unknown targets. Chemically related compounds that are not able to function as methyl donors have no or only a much lower inhibitory influence, while potential methyl or ethyl donors such as methionine and ethionine have a strong inhibitory influence. Cycloleucine, a competitor with methionine in the production of S-adenosyl-methionine (SAM), and sinefungin, a competitor with SAM in transmethylation, interfere with the intrinsic morphogenetically active compounds identified. One of the spatial patterns controlled by inhibitory signals is the distance between polyps in colonies. In Eirene , the addition of N -methylpicolinic acid led to an increase in the interpolyp distance, while sinefungin produced a decrease in this distance. The addition of sinefungin also stimulated stolon branching. Thus, control of methylation appears to play a key role in the control of metamorphosis and pattern formation in hydrozoa.  相似文献   

13.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

14.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

15.
Sheep were given intravenous infusions of ethionine together with cycloleucine or reduced glutathione, in attempts to prevent the inhibition of wool growth by ethionine. Other sheep were given cycloleucine alone to measure effects on wool growth. Twenty-two compounds related to cystine, methionine, ethionine, lysine, phenylalanine and tyrosine were given as intravenous infusions to sheep to investigate their potential as depilatory agents. Nineteen of these compounds were also tested in mice during their first cycle of hair growth. The concurrent administration of cycloleucine with ethionine prevented the weakening of wool fibres caused by ethionine, but reduced glutathione was ineffective. Cycloleucine weakened wool fibres, as judged subjectively, and caused a small reduction in fibre diameter. Selenocystine and selenomethionine caused some hair loss in mice but selenocystine was also toxic. Both seleno-amino acids were toxic for sheep; selenocystine was lethal at 0.025 mmol kg-0.75 and selenomethionine at 0.09 mmol kg-0.75. Doses that permitted survival of sheep did not have depilatory effects. However, the presence of autophagic vacuoles in the cytoplasm of follicle bulb cells of sheep indicated that a toxic dose of selenocystine had potential depilatory activity. Other compounds investigated did not induce loss of wool or hair. Some compounds, notably 3-methylthiopropionic acid and S-(2-aminoethyl)-L-cysteine, were toxic to mice but not sheep. The methionine analogue, methoxinine (O-methyl-DL-homoserine), caused a substantial reduction in the strength of wool fibres and a prolonged alteration of the crimp pattern. It is suggested tentatively that cycloleucine inhibits methionine adenosyltransferase and thereby reduces or prevents the formation of S-adenosylethionine. The failure of various compounds related to methionine and ethionine to have any depilatory activity in sheep supports the view that ethionine influences wool growth via the formation of S-adenosylethionine.  相似文献   

16.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

17.
Alcaligenes denitrificans, pre-incubated with D-alpha-aminoadipate and assayed for L-isomer uptake without removal of extracellular D-isomer, exhibits a reduced rate of uptake and a reduced level at which steady state is achieved. During D- or L-isomer uptake, intracellular alpha-aminoadipate is exclusively the L-configuration. These data are consistent with an intracellular, mediated reduction in L-isomer uptake as the physiological basis for preferential D-alpha-aminoadipate uptake by A. denitrificans growing on racemic alpha-aminoadipate. Translocated D-alpha-aminoadipate is rapidly metabolized to form an L-isomer pool which subsequently reduces the rate of L-isomer uptake and the level at which steady state occurs resulting in a preferred D-isomer uptake. Competitive inhibition of L-alpha-aminoadipate uptake by the D-isomer or a difference in the maximum rates of uptate uptake is an inducible process expressed only in the presence of that compound and while uptake of L-alpha-animoadipate is also inducible there is a low rate of constitutive uptake. While L-alpha-aminoadipate uptake occurs against a concentration gradient, uptake of the D-isomer is not against a gradient. D- and L-isomer uptake are active processes since both are inhibited by azide, cyanide and 2,4-dinitrophenol.  相似文献   

18.
1. The apparent Km values for succinate uptake by whole cells of Escherichia coli K12 depend on pH in the range 6.5-7.4.2. Uptake of succinate in lightly buffered medium is accompanied by proton uptake. 3. The apparent Km values for succinate uptake and for succinate-induced proton uptake are similar. 4. Approximately two protons enter the cell with each succinate molecule. 5. The pattern of inhibition of succinate uptake is similar to that of succinate-induced proton uptake. 6. Uptake of fumarate and malate, which share the succinate-transport system, is also accompanied by the uptake of approximately two protons per molecule of fumarate or malate. 7. Uptake of aspartate by the dicarboxylic acid-transport system is accompanied by the uptake of approximatley two protons per molecule of asparatate. 8. It is concluded that uptake of dicarboxylic acids by the dicarboxylic acid-transport system is obligatorily coupled to proton uptake such that succinate, malate and fumarate are taken up in electroneutral form and asparate is taken up in cationic form. 9. These results are consistent with, though they do not definitely prove, the energization of succinate uptake of the deltapH.  相似文献   

19.
Cycloleucine accumulation by frog muscle was studied at o °C and 25 °C. At external concentrations less than 5 mM the distribution ratio of cycloleucine is higher at 0 °C than at 25 °C. At concentrations greater than 5 mM the converse is true due to apparent exclusion of cycloleucine from a larger portion of the cell water at 0 °C.The steady state data are consistent with an absortion model for amino acid accumulation. Flux studies provide a means to rule out this model if all the possible rate-limiting steps in the movement of amino acid into and out of the cell are considered. These steps include intra-cytoplasmic diffusion, desorption from cytoplasmic or membrane sites and passage through the cell membrane. The assumption is made that the rate-limiting step for influx and efflux is the same, allowing the use of either influx or efflux data to examine the model.Diffusion-limited flux is ruled out on the basis of“influx profile analysis” of the time course of cycloleucine entry at both 0 °C and 25 °C.At least 95% of all intracellular cycloleucine leaves frog muscle cells with a single exponential time course at both 0 °C. The rate constant of efflux does not vary with cellular concentration.These findings are shown to be incompatible with desorption-limited efflux. They are compatible with membrane-limited efflex only if (i) adsorption sites are located on membranes with direct access to the extracellular space and (ii) the rate constant for desorption is equal to the rate constant of membrane-limited efflux of free amino acid. It is considered unlikely that such a coincidence would occur at both 0 °C and 25 °C. Therefore, an absorption model for cycloleucine accumulation in frog muscle appears to be untenable.  相似文献   

20.
Summary The analog described in Part I is used to investigate quantitatively the the effects of pattern and density on the uptake and uptake rate of nutrients which move to plant roots by diffusion. The uptake by two roots is considered first, to illustrate the competitive effect. The results for multiple root systems are given for a variety of different soil and plant parameters at different times and demonstrate the importance of pattern and density in the uptake of different plant nutrients in both competitive and non competitive situations. Pattern can decrease the uptake by root systems by at least 75 per cent, depending on the value of the diffusion coefficient, time, and root density. Graphs of two indices of dispersion against uptake are given so that the effect of any pattern can be estimated. A procedure is outlined which enables the uptake after any time by a developing root system to be predicted and compared with a theoretical maximum. If the uptake is known, then the graphs show whether soil or plant parameters are limiting uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号