首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insulin like growth factor 1 and regulation of ovarian function in mammals   总被引:2,自引:0,他引:2  
Various growth factors have been proposed to play endocrine and/or paracrine role in mammalian ovarian follicular development. The insulin like growth factor 1 (IGF-1) is one such factor. More and more reports now support the existence of an intra-ovarian IGF system including receptors and binding proteins. The role of IGF-1 in ovary is to amplify gonadotropin hormone action in terms of increased steroidogenesis by ovarian granulosa cell and granulosa cell proliferation. The synthesis and proteolysis of insulin like growth factor binding proteins, under the control of follicle stimulating hormone, regulate the intra-follicular availability of IGF-1, which further determines the sensitivity of granulosa cells to gonadotropins. Besides gonadotropins, IGF-1 has been implicated in somatotropin hormone action in the ovarian function. Exact mechanism of IGF-1 action in the ovarian follicles needs to be worked out to elucidate whether or not IGF-1 is indispensable in addition to know endocrine factors like gonadotropic and ovarian steroid hormones. This will pave the way for better understanding of control(s) which ensure final development of dominant follicle(s) and atresia of other follicles of the cohort.  相似文献   

3.
Ovarian steroid production and subsequent local steroid-mediated signaling are critical for normal ovarian processes, including follicle growth, oocyte maturation, and ovulation. In contrast, elevated steroidogenesis and/or increased steroid signaling in the ovary can lead to profound ovarian pathology, such as polycystic ovarian syndrome, the leading cause of infertility in reproductive age women. Through the use of several in vitro and animal models, great strides have been made toward characterizing the mechanisms regulating local steroid production and action in the ovary. Examples of this progress include insights into luteinizing hormone (LH)- and growth factor-mediated signaling, steroidogenic acute regulatory protein (StAR) activation, and both genomic and nongenomic steroid-mediated signaling in somatic and germ cells, respectively. The following review will address these advances, focusing on how this rapidly expanding knowledge base can be used to better understand female reproduction, and to further improve treatments for common diseases of infertility.  相似文献   

4.
Experimental ovarian carcinogenesis has been investigated in inbred and hybrid strains of mice and induced by a diversity of mechanisms including X-irradiation, oocytotoxic xenobiotic chemicals, ovarian grafting to ectopic or orthotopic sites, neonatal thymectomy, mutant genes reducing germ cell populations, and aging. The mechanisms are briefly reviewed whereby disruptions in the function of graafian follicles results in a spectrum of ovarian proliferative lesions including tumors. The findings in mutant mice support the concept of a secondary (hormonally-mediated) mechanism of ovarian carcinogenesis in mice associated with sterility. Multiple pathogenetic factors that either destroy or diminish the numbers of graafian follicles in the ovary result in decreased sex hormone secretion (especially estradiol-17β) leading to a compensatory over-production of pituitary gonadotrophins (particularly luteinizing hormone), which places the mouse ovary at an increased risk to develop tumors. The intense proliferation of ovarian surface epithelium and stromal (interstitial) cells with the development of unique tubular adenomas in response to sterility does not appear to have a counterpart in the ovaries of women.  相似文献   

5.
6.
7.
8.
We have investigated the effects of several phenols (octylphenol [OP], nonylphenol [NP], tert-octylphenol [tOP]) and phthalates (dioctylphthalate [DOP], diisodecylphthalate [DiDP], diisononylphthalate [DiNP]) on steroid hormone production by porcine ovarian granulosa cells after a 72-hour incubation. These chemicals are widely used as plasticisers and are suspected to possess endocrine disrupting properties. No changes were exhibited in basal progesterone production after treatment with NP or tOP, or with the tested phthalates. However, OP tended to decrease progesterone levels, while DOP and DiDP, at the lowest concentration used (10(-8)M), increased progesterone levels in the culture media. Neither of the tested phenols affected follicle stimulating hormone (FSH)-stimulated progesterone production, except for OP and NP at 10(-4)M, which decreased progesterone levels. The phthalates, tested at higher concentrations, were able to amplify FSH-stimulated progesterone release into the culture medium. An inhibitory action on oestradiol production by porcine granulosa cells was observed after the treatment with both groups of test chemicals. The results obtained in the experiments on primary granulosa cell cultures indicate that ovarian steroidogenesis might be one of the possible sites affected by the endocrine disrupting actions of phenols and phthalates.  相似文献   

9.
Scanning electron microscopy has been used to study the apical surface of uterine epithelial cells in women with premature ovarian failure following steroid hormone replacement therapy. A variety of ultrastructural characteristics are identified which could indicate a uterus that is receptive for blastocyst implantation.  相似文献   

10.
Genetic or environmental factors that affect the endowment of oocytes, their assembly into primordial follicles, or their subsequent entry into the growing follicle pool can disrupt reproductive function and may underlie disorders such as primary ovarian insufficiency. Mouse models have been instrumental in identifying genes important in ovarian development, and a number of genes now associated with ovarian dysfunction in women were first identified as causing reproductive defects in knockout mice. The transforming growth factor beta (TGFB) family consists of developmentally important growth factors that include the TGFBs, anti‐Müllerian hormone (AMH), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factor 9 (GDF9). The ovarian primordial follicle pool is the source of oocytes in adults. Development of this pool can be grossly divided into three key processes: (1) establishment of oocytes during embryogenesis followed by (2) assembly and (3) activation of the primordial follicle. Disruptions in any of these processes may cause reproductive dysfunction. Most members of the TGFB family show pivotal roles in each of these areas. Understanding the phenotypes of various mouse models for this protein family will be directly relevant to understanding how disruptions in TGFB family signaling result in reproductive diseases in women and will present new areas for development of tailored diagnostics and interventions for infertility. Mol. Reprod. Dev. 79: 666–679, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Roberts CP  Taylor RN 《Steroids》2008,73(13):1328-1332
A collaborative effort to improve steroid hormone measurements in patient care was convened by the Centers for Disease Control in March 2008 to discuss the need for enhanced performance and standardization of clinical estradiol and testosterone assays. This article discusses the current status of estradiol and testosterone assays in the treatment of infertile women to include the assessment of ovarian reserve, ovulation induction and follicle tracking, ovarian hyperstimulation syndrome, and the role of testosterone in fertility management.  相似文献   

12.
Our understanding of the mechanisms of sex hormone action has changed dramatically over the last 10 years. Estrogens, progestins, and androgens are the steroid hormones that modulate reproductive function. Recent data have shown that many other tissues are targets of sex hormones in addition to classical reproductive organs. This review outlines new advances in our understanding of the spectrum of steroid hormone ligands, newly recognized target tissues, structure-function relationships of steroid receptors, and, finally, their genomic and nongenomic actions. Sex-based specific effects are often related to the different steroid hormone mileu in men compared with women. Understanding the mechanisms of sex steroid action gives insight into the differences in normal physiology and disease states.  相似文献   

13.
Gonadotropin and steroid hormone levels in both peripheral and ovarian venous blood were measured in samples obtained from 20 Japanese patients with polycystic ovary syndrome (PCOs) and 10 normal women in early follicular phase (normal women) by radioimmunoassay. The change in the amount of steroid hormone following intravenous human menopausal gonadotropin (HMG) or dexamethasone administration was investigated. The mean concentration in patients with PCOs was significantly higher than the concentrations found in normal women for LH (p less than 0.001), but not for FSH in peripheral blood. Significantly elevated ovarian venous steroid hormone levels in PCOs were found for 17 alpha-hydroxypregnenolone (p less than 0.05), progesterone (p less than 0.05), 17 alpha-hydroxyprogesterone (p less than 0.01), 4 delta-androstenedione (p less 0.01), testosterone (p less than 0.01), estrone (p less than 0.01) and estradiol (p less than 0.05), but not for dehydroepiandrosterone-sulfate (DHEAS). The ovarian dehydroepiandrosterone (DHEA) level was slightly elevated in PCOs. The concentration of ovarian 4 delta-androstenedione in PCOs reached twelve times as much as that in normal women. After the administration of HMG, all of the ovarian venus steroid hormone levels were elevated slightly and without significance in the short observation time for 10 min. The DHEAS level was suppressed while the ovarian DHEA level remained high in PCOs following dexamethasone administration. These findings seem to indicate there is no adrenal involvement and no adrenal-like component in the ovary of PCOs, and no evidence of 3 beta-hydroxysteroid dehydrogenase and/or aromatase deficiency in this study. The increase in the steroid hormone secretion in PCOs is explained by the increase in ovarian production in polycystic enlarged ovaries.  相似文献   

14.
A finely tuned balance between estrogens and androgens controls reproductive functions, and the last step of steroidogenesis plays a key role in maintaining that balance. Environmental toxicants are a serious health concern, and numerous studies have been devoted to studying the effects of endocrine disrupting chemicals (EDCs). The effects of EDCs on steroidogenic enzymes may influence steroid secretion and thus lead to reproductive toxicity. To predict hormonal balance disruption on the basis of data on aromatase activity and mRNA level modulation obtained in vitro on granulosa cells, we developed a mathematical model for the last gonadal steps of the sex steroid synthesis pathway. The model can simulate the ovarian synthesis and secretion of estrone, estradiol, androstenedione, and testosterone, and their response to endocrine disruption. The model is able to predict ovarian sex steroid concentrations under normal estrous cycle in female rat, and ovarian estradiol concentrations in adult female rats exposed to atrazine, bisphenol A, metabolites of methoxychlor or vinclozolin, and letrozole.  相似文献   

15.
16.
17.
Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, “glucocorticoid disruptors” can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) pre-receptor enzymes, by direct inhibition of 11β-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.  相似文献   

18.
In this study on green turtles, Chelonia mydas, from Peninsular Malaysia, the effect of selected environmental toxicants was examined in vitro. Emphasis was placed on purported hormone-mimicking chemicals such as dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, dieldrin, lead, zinc and copper. Five concentrations were used: high (1 mg/L), medium (10−1 mg/L), low (10−2 mg/L), very low (10−6 mg/L) and control (diluted carrier solvent but no toxicants). The results suggest that environmental pesticides and heavy metals may significantly alter the binding of steroids [i.e. testosterone (T) and oestradiol] to the plasma proteins in vitro. Competition studies showed that only Cu competed for binding sites with testosterone in the plasma collected from nesting C. mydas. Dieldrin and all heavy metals competed with oestradiol for binding sites. Furthermore, testosterone binding affinity was affected at various DDT concentrations and was hypothesised that DDT in vivo may act to inhibit steroid-protein interactions in nesting C. mydas. Although the precise molecular mechanism is yet to be described, DDT could have an effect upon the protein conformation thus affecting T binding (e.g. the T binding site on the steroid hormone binding protein molecule).  相似文献   

19.
20.
Progress in ecotoxicological research documents that crustaceans are highly vulnerable to diverse chemicals and toxicants in the environment. In particular, pollutants affecting endocrine homeostasis in crustaceans (i.e., endocrine disruptors) are intensively studied, and serious reproductive disorders have been documented. In this review, current knowledge about the endocrine regulation of the crustacean reproduction is put together with the published ecotoxicological data with an attempt to summarize the potential of xenobiotics to affect crustacean reproduction. Following gaps and trends were identified: (1) Studies are required in the field of neurohormone (serotonin and dopamine) regulation of the reproduction and possible modulations by environmental toxicants such as antidepressant drugs. (2) Molting-related parameters (regulated by ecdysteroid hormones) are closely coordinated with the development and reproduction cycles in crustaceans (cross-links with methyl farnesoate signalling), and their susceptibility to toxicants should be studied. (3) Other biochemical targets for xenobiotics were recently discovered in crustaceans and these should be explored by further ecotoxicological studies (e.g., new information about ecdysteroid receptor molecular biology). (4) Some sex steroid hormones known from vertebrates (testosterone, progesterone) have been reported in crustaceans but knowledge about their targets (crustacean steroid receptors) and signalling is still limited. (5) Determination of the sex in developing juveniles (affecting the sex ratio in population) is a sensitive parameter to various xenobiotics (including endocrine disruptors) but its modulation by general environmental stress and non-specific toxicity should be further studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号