首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this work was to construct Escherichia coli strains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. coli strains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33–38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain “arg boxes,” which titrate the ArgR repressor protein, with or without the E. coli carAB genes encoding carbamyl phosphate synthetase and the argI gene for ornithine transcarbamylase. The free arginine production rates of “arg-derepressed” E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt) argA. The expression system with fbr argA produced 7- to 35-fold more arginine than a system overexpressing carAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5α strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carAB and argI genes. Plasmids containing wt or fbr argA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.  相似文献   

2.
Summary The nucleotide sequence required for a fully functional promoter and operator of the Pseudomonas aeruginosa argF gene (argF po), the arginine-repressible gene for anabolic ornithine carbamoyltransferase, was defined within a 160 by region. The streptomycin (Sm) resistance genes strAB of plasmid RSF1010 were fused to argF po. This construct in P. aeruginosa strain PAO conferred resistance to Sm. Mutants of strain PAO were selected which were resistant to Sm in the presence of arginine due to constitutive expression of argF po —strAB. These mutants were designated argR. They were unable to grow or grew poorly on arginine or ornithine as the sole carbon and nitrogen source. This growth defect (Aru/Oru phenotype) was correlated with a reduced level of N-succinylornithine aminotransferase, an enzyme participating in the major aerobic pathway for arginine and ornithine catabolism in this organism. The argR mutants were classified into four groups by transduction analysis and three argR mutations were mapped on the PAO chromosome. argR9901 and argR9902 were co-transducible with car-9 (at 1 min) and thus close to the oru-310 locus; argR9906 was localized in the oruI (=aru) gene cluster (67 min). Some aru mutants, which have been isolated previously and which produce very low amounts of all enzymes in the arginine succinyltransferase pathway, were unable to repress the argF gene in an arginine medium. Thus, P. aeruginosa PAO appears to have multiple genes that are involved in the regulation of both the anabolic argF and the catabolic aru genes.Abbreviations Arg arginine auxotrophy - Aru arginine utilization - Oru ornithine utilization  相似文献   

3.
Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S. aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that staphylococci have multiple amino acid auxotrophies, including arginine. Although S. aureus possesses the highly conserved anabolic pathway that synthesizes arginine via glutamate, we demonstrate here that inactivation of ccpA facilitates the synthesis of arginine via the urea cycle utilizing proline as a substrate. Mutations within putA, rocD, arcB1, argG and argH abolished the ability of S. aureus JE2 ccpA::tetL to grow in the absence of arginine, whereas an interruption in argJBCF, arcB2, or proC had no effect. Furthermore, nuclear magnetic resonance demonstrated that JE2 ccpA::ermB produced 13C5 labeled arginine when grown with 13C5 proline. Taken together, these data support the conclusion that S. aureus synthesizes arginine from proline during growth on secondary carbon sources. Furthermore, although highly conserved in all sequenced S. aureus genomes, the arginine anabolic pathway (ArgJBCDFGH) is not functional under in vitro growth conditions. Finally, a mutation in argH attenuated virulence in a mouse kidney abscess model in comparison to wild type JE2 demonstrating the importance of arginine biosynthesis in vivo via the urea cycle. However, mutations in argB, argF, and putA did not attenuate virulence suggesting both the glutamate and proline pathways are active and they, or their pathway intermediates, can complement each other in vivo.  相似文献   

4.
The purpose of this study was to find whether the regulation of urea synthesis was mediated through the activation of N-acetylglutamate synthesis by ornithine when the thyroid status was manipulated. Experiments were done on three groups of rats, given 6-propyl-2-thiouracil (PTU, a thyroid inhibitor) without triiodothyronine (T3) treatment, treated with PTU + T3, or neither PTU nor T3 (control). Urinary excretion of urea and the liver concentrations of ornithine and N-acetylglutamate in rats given PTU + T3 were significantly lower than in rats given PTU alone. The liver concentration of N-acetylglutamate was correlated with the liver concentration of ornithine (r = 0.920, p < 0.001). Ornithine administration (0.5 mmol/100g body wt) elevated the liver concentration of N-acetylglutamate in all three groups. The results suggest that the greater concentration of ornithine in the hypothyroid (PTU alone) rats is likely to increase the N-acetylglutamate concentration in liver and stimulate urea synthesis.  相似文献   

5.
The opportunistic fungal pathogen Aspergillus fumigatus produces siderophores for uptake and storage of iron, which is essential for its virulence. The main precursor of siderophore biosynthesis (SB), ornithine, can be produced from glutamate in the mitochondria or by cytosolic hydrolysis of ornithine-derived arginine. Here, we studied the impact of mitochondrial versus cytosolic ornithine biosynthesis on SB by comparison of the arginine auxotrophic mutants ΔargEF and ΔargB, which lack and possess mitochondrial ornithine production, respectively. Deficiency in argEF (encoding acetylglutamate kinase and acetylglutamyl-phosphate-reductase), but not argB (encoding ornithine transcarbamoyl transferase) decreased (i) the cellular ornithine content, (ii) extra- and intracellular SB, (iii) growth under harsh iron starvation, (iv) resistance to the ornithine decarboxylase inhibitor eflornithine, and (v) virulence in the Galleria mellonella larvae model. These lines of evidence indicate that SB is mainly fueled by mitochondrial rather than cytosolic ornithine production and underline the role of SB in virulence. Ornithine content and SB of ΔargB increased with declining arginine supplementation indicating feedback-inhibition of mitochondrial ornithine biosynthesis by arginine. In contrast to SB, the arginine and polyamine contents were only mildly affected in ΔargEF, indicating prioritization of the latter two ornithine-consuming pathways over SB. These data highlight the metabolic differences between the two arginine auxotrophic mutants ΔargEF and ΔargB and demonstrate that supplementation of an auxotrophic mutant does not restore the wild type metabolism at the molecular level, a fact to be considered when working with auxotrophic mutants. Moreover, cross pathway control-mediating CpcA was found to influence the ornithine pool as well as biosynthesis of siderophores and polyamines.  相似文献   

6.
Isolated hepatocytes from starved rats were loaded with N-[14C]acetylglutamate by preincubating them with [14C]bicarbonate, oleate, NH3, ornithine and lactate. Turnover of N-acetylglutamate in these cells was subsequently measured in an unlabelled medium under conditions of minimal flux (oleate alone present) and maximal flux (oleate, NH3, ornithine and lactate present) through the urea cycle. 1. Direct measurement of the distribution of N-[14C]acetylglutamate across the mitochondrial membrane in the hepatocytes showed that, under the conditions studied, the rate of degradation of total intracellular N-[14C]acetylglutamate was about equal to the rate of efflux of N-acetylglutamate from the mitochondria. 2. In the presence of oleate alone, intramitochondrial N-acetylglutamate decreased because mitochondrial N-acetylglutamate efflux predominated over the synthesis of N-acetylglutamate in the mitochondria. 3. In the presence of oleate, NH3, ornithine and lactate both the rate of synthesis of N-acetylglutamate and the rate of its transport out of the mitochondria were increased when compared with the condition with oleate alone. However, the intramitochondrial concentration of N-acetylglutamate increased because initially the rate of its synthesis exceeded that of its efflux from the mitochondria. Finally, a steady state was reached in which both rates were equal. 4. The data indicate that in hepatocytes from starved rats N-acetylglutamate transport out of the mitochondria takes place at a rate proportional to its intramitochondrial concentration. It is concluded that transport of N-acetylglutamate either occurs by diffusion or is mediated by a transport system with a high Km for intramitochondrial N-acetylglutamate.  相似文献   

7.
Biochemical and genetic studies on the arginine-requiring auxotrophs derived from a Serratia marcescens strain were carried out. The arg mutants were classified into seven biochemical groups based on their growth response to five precursors of arginine biosynthesis and enzyme deficiency. Reciprocal transduction tests among those arg mutants divided them into three linkage groups, and the fine mapping in each of the groups by two- or three-point crosses revealed the following arrangement of loci. (1) arg44–thy11–lys1; (2) met1–glt2–argE–(arg19–arg51)–arg120–argG–argH; (3) arg33–pyr4. Five of the seven biochemically distinct arg mutants belonged to the second linkage group, and they constituted an arg-gene cluster. A characteristic feature of the arg-gene cluster of S. marcescens is that it involves argG, which was previously reported only in the Proteus group of Enterobacteriaceae.  相似文献   

8.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

9.
The question of arginine uptake by mitochondria is important in that arginine is an allosteric effector of N-acetylglutamate synthetase. Thus, changes in mitochondrial arginine concentration have the potential for acutely modifying levels of N-acetylglutamate, a compound necessary for maximal activity of carbamyl phosphate synthesis. Mitochondria were isolated from chow-fed rats, incubated with [guanido-14C]arginine and were centrifuged through silicon oil into perchloric acid for determination of intramitochondrial metabolites. Arginine was separated from urea by cation-exchange resin. Mitochondrial water space was determined by [14C]urea arising from arginase activity associated with the mitochondrial preparations. Extramatrix space was determined by parallel incubations with [inulin-14C]carboxylic acid or [14C]sucrose There was considerable degradation of arginine by arginase associated with the mitochondrial preparation. This was inhibited by 7 mM ornithine and 7 mM lysine. Arginine was concentrated intramitochondrially to 4-times the extramitochondrial levels. The concentration ratio was decreased in the presence of ornithine and lysine but not with citrulline, NH4Cl, glutamate, glutamate or leucine. No uptake was observed when mitochondria were incubated at 0°C. Mitochondria did not concentrate citrulline.  相似文献   

10.
N5-(l-1-Carboxyethyl)-l-ornithine: NADP+ oxidoreductase [N5-(CE)ornithine synthase] catalyzes the NADPH-dependent reductive condensation between pyruvic acid and the terminal amino group ofl-ornithine andl-lysine to yield N5-(l-1-carboxyethyl)-l-ornithine and N6-(l-1-carboxyethyl)-l-lysine respectively. Polyclonal antibodies against N5-(CE)ornithine synthase purified fromStreptococcus lactis K1 have been used for the immunochemical (Western blot) detection and sizing of this enzyme in various lactic acid bacteria. The enzyme was confined to about one-half of the strains ofS. lactis examined. N5-(CE)ornithine synthase is constitutive, and in strains K1, 6F3, and (plasmid-free)H1-4125 the native enzyme is a tetramer composed of identical subunits of Mr=38,000. However, in other strains, including 133 (ATCC 11454), C10, and ML8, the molecular weight of the native enzyme is approximately 130,000 and the corresponding subunit Mr=35,000. Analyses of the amino acid pool components maintained byS. lactis K1 during growth in medium containing [14C] labeled and unlabeled arginine have revealed that (i) exogenous arginine is the precursor of intracellular ornithine, citrulline, and N5-(CE)ornithine, and (ii) the rates of turnover of ornithine and citrulline were considerably faster than that of N5-(CE)ornithine. These data account for the biosynthesis and accumulation of N5-(CE)ornithine byS. lactis.  相似文献   

11.
Summary Two regulatory mutants for arginine catabolism isolated as proline suppressors were tested for the synthesis of ornithine transcarbamylase (OTC), the arginine anabolic enzyme. Mutations at one locus, suD, result in the insensitivity of OTC synthesis to effectors responsible for the enzyme level in the wild strain. The common genetic regulation of both catabolic and anabolic pathways of arginine is postulated.  相似文献   

12.
Summary The genetic regulation of enzymes involved in arginine and ornithine synthesis has been investigated in the parasitic trypanosomatid Herpetomonas samuelpessoai. The activities of two enzymes involved in arginine synthesis, ornithine carbamoyltransferase (OCTase) and argininosuccinate lyase (ASLase) were depressed whereas the enzyme citrulline hydrolase (CHase), which is involved in ornithine synthesis, was increased in arginine supplemented cultures of the parasites. The depression of OCTase activity in the presence of arginine was not due to feedback inhibition and CHase activity of uninduced cultures was not enhanced by exogeneous arginine. Studies of the kinetics of OCTase induction and repression revealed that arginine blocks OCTase synthesis but does not cause destruction of the enzyme. Ornithine, but not citrulline. was found to counteract the arginine mediated repression of OCTase. Two classes of canavanine resistant mutants of H. samuelpessoai were isolated. One class was defective in arginine uptake whereas the other was affected in regulation of OCTase and ASLase which appear to be under coordinate control in H. samuelpessoai.  相似文献   

13.
14.
Arginaseless Neurospora: Genetics, Physiology, and Polyamine Synthesis   总被引:25,自引:19,他引:6  
Four arginaseless mutants of Neurospora crassa have been isolated. All carry mutations which lie at a single locus, aga, on linkage group VIIR. A study of aga strains shows the arginase reaction to be the major, perhaps the only, route of arginine consumption in Neurospora other than protein synthesis. Ornithine-δ-transaminase, the second enzyme of the arginine catabolic pathway, is present and normally inducible by arginine in aga strains, and ornithine transcarbamylase, an enzyme of arginine synthesis, also has normal activity. Arginine inhibits the growth of aga strains. The inhibition can be reversed by spermidine, putrescine (1,4-diaminobutane), or ornithine. The results suggest that ornithine is the major source of the putrescine moiety of polyamines in Neurospora, and that putrescine is an essential growth factor for this organism. The inhibition of aga strains by arginine can be attributed to feedback inhibition of ornithine synthesis by arginine, combined with the complete lack of ornithine normally provided by the arginase reaction.  相似文献   

15.
N-Acetylglutamate synthase, an early enzyme of the arginine pathway, provides acetylglutamate for ornithine synthesis in the so-called "acetylglutamate cycle." Because acetylglutamate is regenerated as ornithine is formed, the enzyme has only a catalytic or anaplerotic role in the pathway, maintaining "bound" acetyl groups during growth. We have detected this enzyme in crude extracts of Neurospora crassa and have localized it to the mitochondria along with other ornithine biosynthetic enzymes. The enzyme is bound to the mitochondrial membrane. The enzyme has a pH optimum of 9.0 and Km values for glutamate and CoASAc of 6.3 and 1.6 mM, respectively. It is feedback-inhibited by L-arginine (I0.5 = 0.16 mM), and its specific activity is augmented 2-3-fold by arginine starvation of the mycelium. Mutants of the newly recognized arg-14 locus lack activity for the enzyme. Because these mutants are complete auxotrophs, we conclude that N-acetylglutamate synthase is an indispensible enzyme of arginine biosynthesis in N. crassa. This work completes the assignment of enzymes of the arginine pathway of N. crassa to corresponding genetic loci. The membrane localization of the enzyme suggests a novel mechanism by which feedback inhibition might occur across a semipermeable membrane.  相似文献   

16.
Summary Aspergillus niger mutants defective in arginine or proline biosynthesis have been isolated and 12 genetic loci were identified. Mutation was induced by low doses UV, and mutants were isolated after filtration enrichment. The mutants were classified according to their phenotype in growth tests and were further characterized in complementation tests. The arginine auxotrophic mutants represent nine complementation groups. Three additional complementation groups were found for mutants that could grow on proline (two of them on arginine too). Linkage group analysis was done in somatic diploids obtained from a mutant and a master strain with genetic markers on six chromosomes. Thearg genes belong to six different linkage groups and thepro genes to two. Onearg-mutant could be complemented by transformation with theA. nidulans arg B + gene, and thisA. niger gene thus appeared to be homologous to theA. nidulans arg B. We isolated anA. niger strain with theargB gene tightly linked with thenicA1 marker. This strain is very suitable as acceptor for transformation with anargB-plasmid, because transformants with inserts on the homologous site can be recognized and analyzed genetically using thenicA1 marker gene.  相似文献   

17.
Summary In order to deregulate arginine biosynthesis in Synechococcus sp. PCC7942, d-arginine-resistant cell lines were selected following ethyl methanesulfonate mutagenesis of wild-type (WT) cells. Three of these arginine-producing mutant (APM) cell lines, APM1, APM31 and APM40, were putative regulatory mutants based upon secretion of l-arginine into their growth medium. HPLC of lyophilized post-harvest supernatants of APM 31 and 40 resolved two predominant amino acids, arginine and citrulline. In-vitro activity of N-acetylglutamate kinase (NAGK), the proposed regulatory enzyme of the arginine pathway, was about 100-fold less sensitive to l-arginine inhibition in extracts from APM 31 and 40 than the enzyme in WT extracts. The enzyme from APM 1 was 20-fold less sensitive to l-arginine inhibition than WT. The most likely site of mutation in each of the APM cell lines is in the gene for NAGK, rendering the enzymes insensitive to l-arginine feedback control. These strains can be utilized for the phototrophic production of arginine. Offprint requests to: S. E. Bingham  相似文献   

18.
Phosphoglucoisomerase (pgi) mutations in a number of independently isolated mannitol-negative mutants of Pseudomonas aeruginosa PAO1 were mapped on the chromosome by plasmid FP5-mediated conjugation and by cotransduction with the generalized transducing phages G101 and F116L. Mutant allele pgi-9001 exhibited linkage to ilvB, C-9059 (46–85%), car-9003 (93–100%), and pur-9047 (70%), but not with met-9011, in FP5-mediated conjugational crosses. All known pgi mutations and several previously uncharacterized mannitol-negative mutations exhibited transductional linkage to two independent car mutations at frequencies ranging from 13% to 42% and 53% to 99%, in transductional crosses mediated by phages G101 and F116L respectively. These pgi and mannitol-negative mutations also were cotransducible at very low frequencies (<1%) with two independent ilv mutations. Cotransduction of the car and ilv loci could not be detected. These data suggest the location of pgi within the first minute of the P. aeruginosa chromosome closely linked to the car marker and probably between the ilv and car loci. All of the mannitol-negative mutations that exhibited linkage to the car and ilv loci were characterized as pgi mutations by enzyme assays. A phenotypically similar, mannitol-negative mutatant was shown to contain a mutation in glucose-6-phosphate dehydrogenase (zwf-9012) that maps to a different region on the chromosome. Received: 26 April 1996 / Accepted: 10 June 1996  相似文献   

19.
We recently proposed a metabolic engineering strategy for l-ornithine production based on the hypothesis that an increased intracellular supply of N-acetylglutamate may further enhance l-ornithine production in a well-defined recombinant strain of Corynebacterium glutamicum. In this work, an argJ-deficient arginine auxotrophic mutant of C. glutamicum is suppressed by a different locus of C. glutamicum ATCC13032. Overexpression of the NCgl1469 open reading frame (ORF), exhibiting N-acetylglutamate synthase (NAGS) activity, was able to complement the C. glutamicum arginine-auxotrophic argJ strain and showed increased NAGS activity from 0.03 to 0.17 units mg−1 protein. Additionally, overexpression of the NCgl1469 ORF resulted in a 39% increase in excreted l-ornithine. These results indicate that the intracellular supply of N-acetylglutamate is a rate-limiting step during l-ornithine production in C. glutamicum.  相似文献   

20.
Summary The nopaline catabolism (noc) genes are located in a 14.4 kb region on the pTiC58 plasmid of A. tumefaciens C58. These genes permit the bacterium to grow on nopaline N2-(1,3-dicarboxylpropyl) arginine, a substrate produced in plant tumors initiated by strain C58. The functions of the noc genes include the use of nopaline and L-ornithine as sole carbon and nitrogen sources. Using Tn5 insertional mutants, we have identified and mapped the positions of the genes that are responsible for nopaline catabolism (NopC), ornithine catabolism (OrnC) and nopaline uptake (NopU). A polar relationship was found between these phenotypes, which extended leftward over the noc region to the T-region. The NopC mutants were also deficient in nopaline oxidase, an enzyme that liberates free arginine from nopaline.The noc region also encodes the synthesis of a periplasmic protein, n1 that was induced by nopaline. Tn5 insertional mutations and molecular cloning were used to map the n1 production locus. The recombinant plasmids, pSa4480 and pSa4481, containing the 8.9 kb right-hand end of the noc region, conferred n1 production when introduced into a pTi-free strain of A. tumefaciens. Production of n1 by the strains carrying these plasmids required nopaline induction.We have identified in toto three noc loci: nocB, nocC, and nocA, which confer n1 production, nopaline oxidase production and ornithine catabolism respectively. A model is proposed whereby the noc genes of pTiC58 are contained on a leftward reading operon in the order nocB, nocC, and nocA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号