首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M. GILMOUR, W.J. MITCHELL AND H.J. FLINT. 1996. Matings between the lactate-utilizing, tetracycline-sensitive Selenomonas ruminantium strains 5521Cl and 5934e and the lactate-non-utilizing, tetracycline-resistant strain FB322 resulted in putative recombinant strains capable of growth on lactate. Analysis of total protein by SDS-PAGE and chromosomal DNA by hybridization, indicated that the recombinants were derived from strain FB322. DNA hybridization produced no evidence that plasmid transfer occurred, leaving chromosomal DNA transfer as the most likely mechanism for the altered phenotype. Analysis of strains 5934e, FB322 and the resulting recombinant TC3 indicated that all three strains contained D-nLDH and L-nLDH activities. In addition strains 5934e and TC3 possessed D-iLDH activity when grown on DL-lactate. The ability of strain FB322 to grow on pyruvate but not lactate suggested that the lactate-utilizing recombinant had acquired the ability to synthesize D-iLDH.  相似文献   

2.
Summary The objective of this study was to determine the maximum ammonium source concentration tolerated by Selenomonas ruminantium and its metabolic response to high ammonium source concentrations. The ammonia-nitrogen half-inhibition constant (K i) in defined basal medium was 239 mabetm for NH4Cl, 173 mabetm for NH4OH, 153 mabetm for (NH4)2SO4 and 110 mabetm for NH4HCO3. Reduction in continuous culture maximal growth rate was similar to the reduction in the batch culture logarithmic growth rate for the respective NH4Cl concentrations. Cell yield when expressed as Y ATP decreased for 150 and 200 mabetm NH4C1. the NH3-N K i estimates are in line with inhibiting concentrations observed for other bacteria and suggest that energy efficiency is reduced when the NH3-N concentration is increased. Offprint requests to: S. C. Ricke  相似文献   

3.
We have applied a model that permits the estimation of the sensitivity of flux through branch point enzymes (D. C. LaPorte, K. Walsh, and D. E. Koshland, J. Biol. Chem. 259:14068-14075, 1984) in order to analyze the control of flux through the lactate-acetate branch point of Selenomonas ruminantium grown in glucose-limited continuous culture. At this branch point, pyruvate is the substrate of both the NAD-dependent L-(+)-lactate dehydrogenase (LDH) and the pyruvate:ferredoxin oxidoreductase (PFOR). The LDH was purified, and it exhibited positive cooperativity for the binding of pyruvate. The LDH had an [S].5 for pyruvate of 0.43 mM, a Hill coefficient of 2.4, and a K' equal to 0.13 mM. The PFOR, assayed in cell extracts, exhibited Michaelis-Menten kinetics for pyruvate, with a Km of 0.49 mM. Carbon flux through the LDH and the PFOR increased 80-fold and 3-fold, respectively, as the dilution rate was increased from 0.07 to 0.52 h-1 in glucose-limited continuous culture. There was nearly a twofold increase, from 6.5 to 11.2 mumol min-1 mg of protein-1 in the specific activity (i.e., maximum velocity) of the LDH at dilution rates of 0.11 and 0.52 h-1, respectively. A flux equation was used to calculate the intracellular concentration of pyruvate; a fourfold increase in pyruvate, from 0.023 to 0.093 mM, was thereby predicted as the dilution rate was increased from 0.07 to 0.52 h-1. When these calculated values of intracellular pyruvate concentration were inserted into the flux equation, the predicted values of flux through the LDH and the PFOR were found to match closely the flux actually measured in the chemostat-grown cells. Thus, the 80-fold increase in flux through the LDH was due to a twofold increase in the maximum velocity of the LDH and a fourfold increase in the intracellular pyruvate concentration. In addition, the flux through the LDH exhibited ultrasensitivity to changes in both the maximum velocity of the LDH and the intracellular concentration of pyruvate. The flux through the PFOR exhibited ultrasensitivity to changes in the maximum velocity of the LDH and hyperbolic sensitivity to changes in the intracellular concentration of pyruvate.  相似文献   

4.
Xylose uptake by the ruminal bacterium Selenomonas ruminantium   总被引:1,自引:0,他引:1  
Selenomonas ruminantium HD4 does not use the phosphoenolpyruvate phosphotransferase system to transport xylose (S. A. Martin and J. B. Russell, J. Gen. Microbiol. 134:819-827, 1988). Xylose uptake by whole cells of S. ruminantium HD4 was inducible. Uptake was unaffected by monensin or lasalocid, while oxygen, o-phenanthroline, and HgCl2 were potent inhibitors. Menadione, antimycin A, and KCN had little effect on uptake, and acriflavine inhibited uptake by 23%. Sodium fluoride decreased xylose uptake by 10%, while N,N'-dicyclohexylcarbodiimide decreased uptake by 31%. Sodium arsenate was a strong inhibitor (83%), and these results suggest the involvement of a high-energy phosphate compound and possibly a binding protein in xylose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and SF6847 inhibited xylose uptake by 88, 82, and 43%, respectively. The cations Na+ and K+ did not stimulate xylose uptake. The kinetics of xylose uptake were nonlinear, and it appeared that more than one uptake mechanism may be involved or that two proteins (i.e., a binding protein and permease protein) with different affinities for xylose were present. Excess (10 mM) glucose, sucrose, or maltose decreased xylose uptake less than 40%. Uptake was unaffected at extracellular pH values between 6.0 and 8.0, while pH values of 5.0 and 4.0 decreased uptake 28 and 24%, respectively. The phenolic monomers p-coumaric acid and vanillin inhibited growth on xylose and xylose uptake more than ferulic acid did. The predominant end products resulting from the fermentation of xylose were lactate (7.5 mM), acetate (4.4 mM), and propionate (5.1 nM), and the Yxylose was 24.1 g/mol.  相似文献   

5.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   

6.
7.
S illey , P. & A rmstrong , D.G. 1984. Changes in metabolism and cell size of the anaerobic bacterium Selenomonas ruminantium 0078A at the onset of growth in continuous culture. Journal of Applied Bacteriology 56 , 487–492.
Initial metabolism of Selenomonas ruminantium 0078A in continuous culture was characterized by a high lactate and low volatile fatty acid production; this was associated with poor growth as determined by bacterial dry weight production, yet individual cells were considerably larger than those of the inoculum. Biomass production increased, cell size decreased and the fermentation pattern reverted to the characteristic low lactate and high volatile fatty acid production after approximately 90 h growth.  相似文献   

8.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   

9.
Xylose uptake by the ruminal bacterium Selenomonas ruminantium.   总被引:3,自引:3,他引:0       下载免费PDF全文
Selenomonas ruminantium HD4 does not use the phosphoenolpyruvate phosphotransferase system to transport xylose (S. A. Martin and J. B. Russell, J. Gen. Microbiol. 134:819-827, 1988). Xylose uptake by whole cells of S. ruminantium HD4 was inducible. Uptake was unaffected by monensin or lasalocid, while oxygen, o-phenanthroline, and HgCl2 were potent inhibitors. Menadione, antimycin A, and KCN had little effect on uptake, and acriflavine inhibited uptake by 23%. Sodium fluoride decreased xylose uptake by 10%, while N,N'-dicyclohexylcarbodiimide decreased uptake by 31%. Sodium arsenate was a strong inhibitor (83%), and these results suggest the involvement of a high-energy phosphate compound and possibly a binding protein in xylose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and SF6847 inhibited xylose uptake by 88, 82, and 43%, respectively. The cations Na+ and K+ did not stimulate xylose uptake. The kinetics of xylose uptake were nonlinear, and it appeared that more than one uptake mechanism may be involved or that two proteins (i.e., a binding protein and permease protein) with different affinities for xylose were present. Excess (10 mM) glucose, sucrose, or maltose decreased xylose uptake less than 40%. Uptake was unaffected at extracellular pH values between 6.0 and 8.0, while pH values of 5.0 and 4.0 decreased uptake 28 and 24%, respectively. The phenolic monomers p-coumaric acid and vanillin inhibited growth on xylose and xylose uptake more than ferulic acid did. The predominant end products resulting from the fermentation of xylose were lactate (7.5 mM), acetate (4.4 mM), and propionate (5.1 nM), and the Yxylose was 24.1 g/mol.  相似文献   

10.
Skene IK  Brooker JD 《Anaerobe》1995,1(6):321-327
A strain of the anaerobe Selenomonas ruminantium subsp. ruminantium that is capable of growing on tannic acid or condensed tannin as a sole energy source has been isolated from ruminal contents of feral goats browsing tannin-rich Acacia sp. Growth on tannic acid was accompanied by release of gallic acid into the culture medium but the bacterium was incapable of using gallic acid as a sole energy source. Tannin acylhydrolase (EC 3.1.1.20) activity was measured in crude cell-free extracts of the bacterium. The enzyme has a pH optimum of 7, a temperature optimum of 30-40 degrees C and a molecular size of 59 kDa. In crude extracts, the maximal rate of gallic acid methyl ester hydrolysis was 6.3 micromol min(-1) mg(-1) of protein and the K(m) for gallic acid methyl ester was 1.6 mM. Enzyme activity was displayed in situ in polyacrylamide and isoelectric focusing gels and was demonstrated to increase 17-fold and 36-fold respectively when cells were grown in the presence of gallic acid methyl ester or tannic acid.  相似文献   

11.
Initial metabolism of Selenomonas ruminantium 0078A in continuous culture was characterized by a high lactate and low volatile fatty acid production; this was associated with poor growth as determined by bacterial dry weight production, yet individual cells were considerably larger than those of the inoculum. Biomass production increased, cell size decreased and the fermentation pattern reverted to the characteristic low lactate and high volatile fatty acid production after approximately 90 h growth.  相似文献   

12.
Urease was purified 592-fold to homogeneity from the anaerobic rumen bacterium Selenomonas ruminantium. The urease isolation procedure included a heat step and ion-exchange, hydrophobic, gel filtration, and fast protein liquid chromatography. The purified enzyme exhibited a Km for urea of 2.2 +/- 0.5 mM and a Vmax of 1100 mumol of urea min-1 mg-1. The molecular mass estimated for the native enzyme was 360,000 +/- 50,000 daltons, whereas a subunit value of 70,000 +/- 2,000 daltons was determined. These results are in contrast to the findings of Mahadevan et al. (Mahadevan, S., Sauer, F. D., and Erfle, J. D. (1977) Biochem. J. 163, 495-501) in which isolated rumen urease was reported to be one-third this size (Mr 120,000-130,000) and to catalyze urea hydrolysis at a maximum velocity of only 53 mumol min-1 mg-1. S. ruminantium urease contained 2.1 +/- 0.4 nickel ions/subunit, comparable to the nickel content in jack bean urease (Dixon, N.E., Gazzola, C., Blakeley, R.L., and Zerner, B. (1975) J. Am. Chem. Soc. 97, 4131-4133). Thus, the active site of bacterial urease is very similar to that found in the plant enzymes.  相似文献   

13.
A 4.8-kilobase-pair plasmid was isolated from the ruminal bacterium selenomonas ruminantium HD4 by using a sodium carbonate-EDTA washing buffer to improve cell lysis (R.G. Dean, S.A. Martin, and C. Carver, Lett. Appl. Microbiol. 8:45-48, 1989). This plasmid, designated pSR1, appears to be quite stable. No evidence of plasmid DNA was detected in S. ruminantium D or GA192. All three strains were tested for antibiotic resistance, and all were kanamycin resistant (MIC, 25 to 50 micrograms/ml). Only strain D was tetracycline resistant (MIC, 25 micrograms/ml), and all strains were sensitive to ampicillin (MIC, 1 microgram/ml). pSR1 was cloned into pBR322, and a map of pSR1 was constructed by using HindIII, ClAI, BamHI, and PvuII. Although ClaI, BamHI, ScaI, and EcoRV digested recombined plasmid isolated from Escherichia coli, these restriction endonucleases were not effective in digesting plasmid isolated directly from S. ruminantium HD4.  相似文献   

14.
Selenomonas ruminantium strains were isolated from sheep rumen, and their significance for fiber digestion was evaluated. Based on the phylogenetic classification, two clades of S. ruminantium (clades I and II) were proposed. Clade II is newly found, as it comprised only new isolates that were phylogenetically distant from the type strain, while all of the known isolates were grouped in the major clade I. More than half of clade I isolates displayed CMCase activity with no relation to the degree of bacterial adherence to fibers. Although none of the isolates digested fiber in monoculture, they stimulated fiber digestion when co-cultured with Fibrobacter succinogenes, and there was an enhancement of propionate production. The extent of such synergy depended on the clade, with higher digestion observed by co-culture of clade I isolates with F. succinogenes than by co-culture with clade II isolates. Quantitative PCR analysis showed that bacterial abundance in the rumen was higher for clade I than for clade II. These results suggest that S. ruminantium, in particular the major clade I, is involved in rumen fiber digestion by cooperating with F. succinogenes.  相似文献   

15.
A 4.8-kilobase-pair plasmid was isolated from the ruminal bacterium selenomonas ruminantium HD4 by using a sodium carbonate-EDTA washing buffer to improve cell lysis (R.G. Dean, S.A. Martin, and C. Carver, Lett. Appl. Microbiol. 8:45-48, 1989). This plasmid, designated pSR1, appears to be quite stable. No evidence of plasmid DNA was detected in S. ruminantium D or GA192. All three strains were tested for antibiotic resistance, and all were kanamycin resistant (MIC, 25 to 50 micrograms/ml). Only strain D was tetracycline resistant (MIC, 25 micrograms/ml), and all strains were sensitive to ampicillin (MIC, 1 microgram/ml). pSR1 was cloned into pBR322, and a map of pSR1 was constructed by using HindIII, ClAI, BamHI, and PvuII. Although ClaI, BamHI, ScaI, and EcoRV digested recombined plasmid isolated from Escherichia coli, these restriction endonucleases were not effective in digesting plasmid isolated directly from S. ruminantium HD4.  相似文献   

16.
Cell envelopes from the Gram-negative staining but phylogenetically Gram-positive rumen anaerobe Selenomonas ruminantium OB268 contained a major 42 kDa heat modifiable protein. A similarly sized protein was present in the envelopes of Selenomonas ruminantium D1 and Selenomonas infelix. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of Triton X-100 extracted cell envelopes from S. ruminantium OB268 showed that they consisted primarily of the 42 kDa protein. Polyclonal antisera produced against these envelopes cross-reacted only with the 42 kDa major envelope proteins in both S. ruminantium D1 and S. infelix, indicating a conservation of antigenic structure among each of the major envelope proteins. The N-terminus of the 42 kDa S. ruminantium OB268 envelope protein shared significant homology with the S-layer (surface) protein from Thermus thermophilus, as well as additional envelope proteins containing the cell surface binding region known as a surface layer-like homologous (SLH) domain. Thin section analysis of Triton X-100 extracted envelopes demonstrated the presence of an outer bilayer over-laying the cell wall, and a regularly ordered array was visible following freeze-fracture etching through this bilayer. These findings suggest that the regularly ordered array may be composed of the 42 kDa major envelope protein. The 42 kDa protein has similarities with regularly ordered outer membrane proteins (rOMP) reported in certain Gram-negative and ancient eubacteria.  相似文献   

17.
Diphenyl, o-phenylphenol and thiabendazole were analyzed in citrus fruits. The peel and edible parts were separately homogenized. These fungicides were extracted with dichloromethane from the homogenate, and they were fractionated with Sephadex LH-20 columns. Gas chromatography was used to determine the presence of these fungicides. The fungicides found in edible parts of citrus fruits were confirmed by gas chromatography-mass spectrometry.

Diphenyl, o-phenylphenol and thiabendazole were detected in imported grapefruits, lemons and oranges. Almost all fungicides were found in the peel. The concentrations of the three fungicides in the edible parts were very low. Some samples contained all three fungicides in the edible parts.  相似文献   

18.
Summary The production of organic acids (acetate, lactate, and propionate) by the anaerobic, ruminal bacteriumSelenomonas ruminantium HD4 was investigated in both glucose-limited and glucose-sufficient (phosphate-limited) continuous cultures. The fermentation pattern of products exhibited a shift upon release of glucose limitation from acetate and propionate to lactate at a dilution rate of 0.2 h–1. Glucose sufficiency brought about two-to fourfold increase in specific glucose utilization rate, lactate productivity, and lactate yield relative to glucose-limited growth conditions. The increased lactate production under glucose-sufficient growth conditions was attributed to the overutilization of excess glucose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

19.
20.
Abstract Selenomonas ruminantium (strain I10) isolated from the ovine rumen showed considerable morphological variation and lack of motility when cultured in a phosphate-limited chemostat in the presence of high levels of glucose (55.5 mM). Transmission electron microscopy showed that some of these variants were capable of producing daughter cells with a typical selenomonad morphology but lacking flagella.
The reduction of the levels of glucose (27.8 mM) in the media caused the numbers of cells exhibiting variation to decrease, with a corresponding increase in motile cells possessing a typical selenomonad morphology. The removal of trypticase from the media had no effect on the morphology or motility of the cells.
During the initial stages of changeover to reduced glucose levels variants could be found in the chemostat which were flagellate. The flagellae were consistently attached to a concave section of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号