首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a continuous-addition method for maintaining subsaturating concentrations of ribulose-1,5-bisphosphate (RuBP) for several minutes, while simultaneously monitoring its consumption by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This method enabled us to observe the effects of subsaturating RuBP and CO2 concentrations on the activity of Rubisco during much longer periods than previously studied. At saturating CO2, the activity of the enzyme declined faster when RuBP was maintained at concentrations near its Km value than when RuBP was saturating. At saturating RuBP, activity declined faster at limiting than at saturating CO2, in accordance with previous observations. The most rapid decline in activity occurred when both CO2 and RuBP concentrations were subsaturating. The activity loss was accompanied by decarbamylation of the enzyme, even though the enzyme was maintained at the same CO2 concentration before and after exposure to RuBP. Rubisco activase ameliorated the decline in activity at subsaturating CO2 and RuBP concentrations. The results are consistent with a proposed mechanism for regulating the carbamylation of Rubisco, which postulates that Rubisco activase counteracts Rubisco's unfavorable carbamylation equilibrium in the presence of RuBP by accelerating, in an ATP-dependent manner, the release of RuBP from its complex with uncarbamylated sites.  相似文献   

2.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

3.
Heat stress in leaves under natural conditions is characterized by rapid fluctuations in temperature. These fluctuations can be on the order of 10 degrees C in 7 s. By using a specially modified gas-exchange chamber, these conditions were mimicked in the laboratory to analyse the biochemical response to heat spikes. The decline in ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity during prolonged heat stress is generally associated with an increase in ribulose 1,5-bisphosphate (RuBP) levels. However, rapid heating caused an initial decline in RuBP which was subsequently followed by a small decline in Rubisco carbamylation. The ratio of RuBP to Rubisco sites declined from a saturating concentration to a sub-saturating concentration, providing a possible mechanism for the decarbamylation of Rubisco. If RuBP is saturating (>1.8 RuBP Rubisco site(-1)), it acts as a cap on the catalytic site and keeps Rubisco activated. Measurements of triose-phosphate levels and NADP-malate dehydrogenase activation (a stromal redox proxy) indicated that the regeneration of RuBP by the Calvin cycle was limited by the availability of redox power.  相似文献   

4.
Sunflower (Helianthus annuus L. cv Asmer) and maize (Zea mays L. cv Eta) plants were grown under controlled environmental conditions with a nutrient solution containing 0, 0.5, or 10 millimolar inorganic phosphate. Phosphate-deficient leaves had lower photosynthetic rates at ambient and saturating CO2 and much smaller carboxylation efficiencies than those of plants grown with ample phosphate. In addition, phosphate-deficient leaves contained smaller quantities of total soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit area, although the relative proportions of these components remained unchanged. The specific activity of Rubisco (estimated in the crude extracts of leaves) was significantly reduced by phosphate deficiency in sunflower but not in maize. Thus, there was a strong dependence of carboxylation efficiency and CO2-saturated photosynthetic rate on Rubisco activity only in sunflower. Phosphate deficiency decreased the 3-phosphoglycerate and ribulose-1,5-bisphosphate (RuBP) contents of the leaf in both species. The ratio of 3-phosphoglycerate to RuBP decreased in sunflower but increased in maize with phosphate deficiency. The calculated concentrations of RuBP and RuBP-binding sites in the chloroplast stroma decreased markedly with phosphate deficiency. The ratio of the stromal concentration of RuBP to that of RuBP-binding sites decreased in sunflower but was not affected in maize with phosphate deficiency. We suggest that a decrease in this ratio made the RuBP-binding sites more vulnerable to blockage or inactivation by tight-binding metabolites/inhibitors, causing a decrease in the initial specific activity of Rubisco in the crude extract from phosphate-deficient sunflower leaves. However, the decrease in Rubisco specific activity was much less than the decrease in the RuBP content in the leaf and its concentration in the stroma. A large ratio of RuBP to RuBP-binding sites may have maintained the Rubisco-specific activity in phosphate-deficient maize leaves. We conclude that the effect of phosphate deficiency is more on RuBP regeneration than on Rubisco activity in both sunflower and maize.  相似文献   

5.
The discovery of Rubisco activase – yet another story of serendipity   总被引:1,自引:0,他引:1  
A brief history of Rubisco (ribulose bisphosphate carboxylase oxygenase) research and the events leading to the discovery and initial characterization of Rubisco activase are described. Key to the discovery was the chance isolation of a novel Arabidopsis photosynthesis mutant. The characteristics of the mutant suggested that activation of Rubisco was not a spontaneous process in vivo, but involved a heritable factor. The search for the putative factor by 2D electrophoresis identified two polypeptides, genetically linked to Rubisco activation, that were missing in chloroplasts from the mutant. An assay for the activity of these polypeptides, which were given the name Rubisco activase, was developed after realizing the importance of including ribulose bisphosphate (RuBP) in the assay. The requirement for ATP and the subsequent identification of activase as an ATPase came about fortuitously, the result of a RuBP preparation that was contaminated with adenine nucleotides. Finally, the ability of activase to relieve inhibition of the endogenous Rubisco inhibitor, 2-carboxyarabinitol 1-phosphate, provided an early indication of the mechanism by which activase regulates Rubisco. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and pool sizes of RuBP and P-glycerate were examined in the tropical understory species Alocasia macrorrhiza following step changes in photon flux density (PFD). Previous gas exchange analysis of this species following a step increase in PFD from 10 to 500 micromoles quanta per square meter per second suggested that the increase in photosynthetic rate was limited by the rate of increase of Rubisco activity for the first 5 to 10 minutes. We demonstrate here that the increase in photosynthetic rate was correlated with an increase in both the activation state of Rubisco and the total kcat (fully activated specific activity) of the enzyme. Evidence presented here suggests that a change in the pool size of the naturally occurring tight binding inhibitor of Rubisco activity, 2-carboxyarabinitol 1-phosphate, was responsible for the PFD-dependent change in the total kcat of the enzyme. RuBP pool size transiently increased after the increase in PFD, indicating that photosynthesis was limited by the capacity for carboxylation. After 5 to 10 minutes, RuBP pool size was again similar to the pool size at low PFD, presumably because of the increased activity of Rubisco. Following a step decrease in PFD from 500 to 10 micromoles quanta per square meter per second, Rubisco activity declined but at a much slower rate than it had increased in response to a step increase in PFD. This slower rate of activity decline than increase was apparently due to the slower rate of 2-carboxyarabinitol 1-phosphate synthesis than degradation and, to a lesser degree, to slower deactivation than activation. RuBP pool size initially declined following the decrease in PFD, indicating that RuBP regeneration was limiting photosynthesis. As Rubisco activity decreased, RuBP slowly increased to its original level at high PFD. The slow rate of activity loss by Rubisco in this species suggests a biochemical basis for the increased efficiency for CO2 assimilation of successive lightfleck use by species such as A. macrorrhiza.  相似文献   

7.
A procedure was devised to measure the initial and total Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities for the green microalga, Scenedesmus ecornis. Total Rubisco activities corresponded well with photosynthetic carbon assimilation rates. Initial activities ranged from 10 to 40% of the total activities and did not correlate with photosynthetic rates. Investigations into potential causes of the reduced initial activities yielded modest increases in percentage of the total activity. Values of Km for ribulose-1,5-bisphosphate (RuBP) were similar for both initial and CO2-Mg2+ activated enzyme. Total activities increased with increasing concentrations of RuBP to 400 μm, the assay concentration. However, concentrations above the Km, 25 μm RuBP, were inhibitory for the initial Rubisco form. Inhibition increased with increasing RuBP concentration. The addition of Mg2+ in the extraction solution did not prevent RuBP inhibition. The results suggest that the low initial Rubisco activities are principally due to decarbamylation of the active sites of the enzyme during extraction.  相似文献   

8.
植物光呼吸及其支路建立的研究进展   总被引:1,自引:0,他引:1  
植物光呼吸是生物圈中重要的碳代谢途径之一.它以RuBP羧化/加氧酶(Rubisco)的催化加氧反应为起点,在叶绿体中将O2和RuBP转化为2-磷酸乙醇酸(2PG);经光呼吸代谢,一部分碳在线粒体中以CO2的形式释放,造成植物已固定碳的丢失,其余碳骨架则被重新合成3-磷酸甘油酸(3PGA)而进人卡尔文循环.植物光呼吸突变体无法在正常大气中生存,植物通过光呼吸可清除其中问代谢产物的毒害作用,减轻光抑制造成的伤害,同时为氮代谢提供氮源和能量,并利用代谢产生的H2O2在防卫反应中起作用.本文综述了光呼吸构成组分的最新研究进展和光呼吸对植物的重要性,并介绍了一种有效提高植物生物量的方法,即将光呼吸中CO2的释放重新定位于叶绿体中来提高Rubisco的羧化效率,它对提高C3作物的产量有重要应用价值.  相似文献   

9.
The leaf model of C3 photosynthesis of Farquhar, von Caemmerer & Berry (Planta 149, 78–90, 1980) provides the basis for scaling carbon exchange from leaf to canopy and Earth‐System models, and is widely used to project biosphere responses to global change. This scaling requires using the leaf model over a wider temperature range than that for which the model was originally parameterized. The leaf model assumes that photosynthetic CO2 uptake within a leaf is either limited by the rate of ribulose‐1,5‐bisphosphate (RuBP) regeneration or the activity of RuBP carboxylase‐oxygenase (Rubisco). Previously we reported a re‐parameterization of the temperature responses of Rubisco activity that proved robust when applied to a range of species. Herein this is extended to re‐parameterizing the response of RuBP‐limited photosynthesis to temperature. RuBP‐limited photosynthesis is assumed to depend on the whole chain electron transport rate, which is described as a three‐parameter non‐rectangular hyperbolic function of photon flux. Herein these three parameters are determined from simultaneous measurement of chlorophyll fluorescence and CO2 exchange of tobacco leaves, at temperatures from 10 to 40 °C. All varied significantly with temperature and were modified further with variation in growth temperature from 15 to 35 °C. These parameters closely predicted the response of RuBP‐limited photosynthesis to temperature measured in both lemon and poplar and showed a significant improvement over predictions based on earlier parameterizations. We provide the necessary equations for use of the model of Farquhar et al. (1980) with our newly derived temperature functions for predicting both Rubisco‐ and RuBP‐limited photosynthesis.  相似文献   

10.
Cen YP  Sage RF 《Plant physiology》2005,139(2):979-990
The temperature response of net CO(2) assimilation rate (A), the rate of whole-chain electron transport, the activity and activation state of Rubisco, and the pool sizes of ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglyceric acid (PGA) were assessed in sweet potato (Ipomoea batatas) grown under greenhouse conditions. Above the thermal optimum of photosynthesis, the activation state of Rubisco declined with increasing temperature. Doubling CO(2) above 370 mubar further reduced the activation state, while reducing CO(2) by one-half increased it. At cool temperature (<16 degrees C), the activation state of Rubisco declined at CO(2) levels where photosynthesis was unaffected by a 90% reduction in O(2) content. Reduction of the partial pressure of CO(2) at cool temperature also enhanced the activation state of Rubisco. The rate of electron transport showed a pronounced temperature response with the same temperature optimum as A at elevated CO(2). RuBP pool size and the RuBP-to-PGA ratio declined with increasing temperature. Increasing CO(2) also reduced the RuBP pool size. These results are consistent with the hypothesis that the reduction in the activation state of Rubisco at high and low temperature is a regulated response to a limitation in one of the processes contributing to the rate of RuBP regeneration. To further evaluate this possibility, we used measured estimates of Rubisco capacity, electron transport capacity, and the inorganic phosphate regeneration capacity to model the response of A to temperature. At elevated CO(2), the activation state of Rubisco declined at high temperatures where electron transport capacity was predicted to be limiting, and at cooler temperatures where the inorganic phosphate regeneration capacity was limiting. At low CO(2), where Rubisco capacity was predicted to limit photosynthesis, full activation of Rubisco was observed at all measurement temperatures.  相似文献   

11.
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and metabolite pool sizes in response to natural diurnal changes in photon flux density (PFD) was examined in three species (Phaseolus vulgaris, Beta vulgaris, and Spinacia oleracea) known to differ in the mechanisms used for this regulation. Diurnal regulation of Rubisco activity in P. vulgaris was primarily the result of metabolism of the naturally occurring tight-binding inhibitor of Rubisco, 2-carboxyarabinitol 1-phosphate (CA1P). In B. vulgaris, the regulation of Rubisco activity was the result of both changes in activation state and CA1P metabolism. In S. oleracea, Rubisco activity was regulated by a combination of changes in activation state and the binding/release of another tight binding inhibitor, probably RuBP. Despite these different mechanisms for the light regulation of Rubisco activity, the relationship between the in vivo activity of Rubisco and the PFD was the same for all three species. Rates of CA1P metabolism were thus sufficient to allow this mechanism to participate in the diurnal regulation of Rubisco activity as PFD changed at its normal rate. Furthermore, under natural conditions this regulatory mechanism was found to be important in controlling Rubisco activity over approximately the same range of PFD as did changes in activation state of the enzyme. Finally, this regulation of Rubisco activity resulted in relatively similar and saturating RuBP pool sizes for photosynthesis at all but the lowest PFD values in all three species.  相似文献   

12.
CO2 fixation during photosynthesis is regulated by the activity of ribulose bisphosphate carboxylase (Rubisco). This conclusion became more apparent to me after CO2-fixation experiments using isolated spinach chloroplasts and protoplasts, purified Rubisco enzyme, and intact leaves. Ribulose bisphosphate (RuBP) pools and activation of Rubisco were measured and compared to 14CO2 fixation in light. The rates of 14CO 2 assimilation best followed the changes in Rubisco activation under moderate to high light intensities. RuBP pool sizes regulated 14 2 assimilation only in very high CO2 levels, low light and in darkness. Activation of Rubisco involves two separate processes: carbamylation of the protein and removal of inhibitors blocking carbamylation or blocking RuBP binding to carbamylated sites before reaction with CO2 or O2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
RuBPcarboxylase activity was measured in extracts of barley (Hordeum Vulgare L., cv. HOP) seedlings both with the standard radiometric method and by measuring D-3-phosphoglyceric acid formed enzymically in a two stage assay. In the different conditions used, characterized by different NaHCO3 concentrations, different pH and the presence and absence of oxygen, essentially the same ratio of D-3-PGA formed per 14CO2 fixed was obtained. This ratio respected the known stoichiometry of two molecules of D-3-PGA formed per CO2 fixed.It is suggested that measurement of D-3-PGA enzymically in a two stage assay can be routinely used for the determination of RuBP case activity instead of the radiometric method. The advantages and the validity of the method are discussed.Abbreviations Bicine N, N-bis-(2-hydroxyethyl)-glycine - NADH nicotinamide adenine dinucleotide, reduced - PGA phosphoglyceric acid - RuBP ribulose-1-5-bisphosphate  相似文献   

14.
The solubilization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the membrane fraction was studied in whole leaf extracts and chloroplasts from pea. The amount of membrane-bound Rubisco was dependent on the pH of the chloroplastic lysate buffer. Maximum binding was found at pH 8.0, with about 8% of total leaf Rubisco being bound. The binding of Rubisco to the membranes was strong, and it was not released by repeated washing with hypotonic buffer or by changing ionic strength. Detergents such as Triton X-100, Tween 20, deoxycholate and dodecylsulfate were effective in solubilizing the membrane-bound Rubisco. Triton X-100 was most effective in the range of 0.04% to 0.2% and it solubilized Rubisco from the membrane without any decrease in enzyme activity.Abbreviations BSA bovine serum albumin - CABP carboxyarabinitol-1,5-bisphosphate - DTT dithiothreitol - LDS lithium dodecylsulfate - LHC light-harvesting chlorophyll protein complex - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase - SDS sodium dodecylsulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

15.
Methods for in vivo measurement of the concentration of the reactive centers of ribulose-1,5,-bisphosphate carboxylase/oxygenase (Rubisco) are suggested that are based on saturation of the active centers with RuBP and determination of the concentration of the Rubisco–RuBP complex. The total concentration of potentially reactive centers is calculated from the dependence of the concentration of this complex on CO2 concentration at a steady-state photosynthetic rate with further extrapolation of the carbon dioxide dependence curve to a zero CO2 concentration. The concentration of centers that possessed a catalytic activity under given environmental conditions was measured after transferring leaves having a steady-state photosynthetic rate into a medium devoid of CO2 and O2. This procedure ensured the saturation of the carboxylation centers with RuBP. The carboxylation rates were measured during a short-term exposure to 14CO2, and the concentration of the complex was calculated using the values of CO2 concentration during the exposure time, as well as the carboxylation rate and constant. Rubisco activity was found to decrease at elevated CO2 concentrations due to a lower concentration of catalytically active enzyme centers.  相似文献   

16.
Crafts-Brandner SJ  Law RD 《Planta》2000,212(1):67-74
Experiments were conducted to determine the relative contributions of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) activation state vis-à-vis Rubisco activase and metabolite levels to the inhibition of cotton (Gossypium hirsutum L.) photosynthesis by heat stress. Exposure of leaf tissue in the light to temperatures of 40 or 45 °C decreased the activation state of Rubisco to levels that were 65 or 10%, respectively, of the 28 °C control. Ribulose-1,5-bisphosphate (RuBP) levels increased in heat-stressed leaves, whereas the 3-phosphoglyceric acid pool was depleted. Heat stress did not affect Rubisco per se, as full activity could be restored by incubation with CO2 and Mg2+. Inhibition and recovery of Rubisco activation state and carbon dioxide exchange rate (CER) were closely related under moderate heat stress (up to 42.5 °C). Moderate heat stress had negligible effect on Fv/Fm, the maximal quantum yield of photosystem II. In contrast, severe heat stress (45 °C) caused significant and irreversible damage to Rubisco activation, CER, and Fv/Fm. The rate of Rubisco activation after alleviating moderate heat stress was comparable to that of controls, indicating rapid reversibility of the process. However, moderate heat stress decreased both the rate and final extent of CER activation during dark-to-light transition. Treatment of cotton leaves with methyl viologen or an oxygen-enriched atmosphere reduced the effect of heat stress on Rubisco inactivation. Both treatments also reduced tissue RuBP levels, indicating that the amount of RuBP present during heat stress may influence the degree of Rubisco inactivation. Under both photorespiratory and non-photorespiratory conditions, the inhibition of the CER during heat stress could be completely reversed by increasing the internal partial pressure of CO2 (Ci). However, the inhibition of the CER by nigericin, a K+ ionophore, was not reversible when the Ci was increased at ambient or high temperature. Our results indicate that inhibition of photosynthesis by moderate heat stress is not caused by inhibition of the capacity for RuBP regeneration. We conclude that heat stress inhibits Rubisco activation via a rapid and direct effect on Rubisco activase, possibly by perturbing Rubisco activase subunit interactions with each other or with Rubisco. Received: 25 February 2000 / Accepted: 13 May 2000  相似文献   

17.
The light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in 16 species of C4 plants representing all three biochemical subtypes and a variety of taxonomic groups. Rubisco regulation was assessed by measuring (a) the ratio of initial to total Rubisco activity, which reflects primarily the carbamylation state of the enzyme, and (b) total Rubisco activity per mol of Rubisco catalytic sites, which declines when 2-carboxyarabinitol 1-phosphate (CA1P) binds to carbamylated Rubisco. In all species examined, the activity ratio of Rubisco declined with a reduction in light intensity, although substantial variation was apparent between species in the degree of Rubisco deactivation. No relationship existed between the degree of Rubisco deactivation and C4 subtype. Dicots generally deactivated Rubisco to a greater degree than monocots. The total activity of Rubisco per catalytic site was generally independent of light intensity, indicating that CA1P and other inhibitors are not major contributors to the light-dependent regulation of Rubisco activity in C4 plants. The light response of the activity ratio of Rubisco was measured in detail in Amaranthus retroflexus, Brachiaria texana, and Zea mays. In A. retroflexus and B. texana, the activity ratio declined dramatically below a light intensity of 400 to 500 [mu]mol of photons m-2 s-1. In Z. mays, the activity ratio of Rubisco was relatively insensitive to light intensity compared with the other species. In A. retroflexus, the pool size of ribulose bisphosphate (RuBP) declined with reduced light intensity except between 50 and 500 [mu]mol m-2 s-1, when the activity ratio of Rubisco was light dependent. In Z. mays, by contrast, the pool size of RuBP was light dependent only below 350 [mu]mol m-2 s-1. These results indicate that, in response to changes in light intensity, most C4 species regulate Rubisco by reversible carbamylation of catalytic sites, as commonly observed in C3 plants. In a few species, notably Z. mays, Rubisco is not extensively regulated in response to changes in light intensity, possibly because the activity of the CO2 pump may become limiting for photosynthesis at subsaturating light intensity.  相似文献   

18.
The biochemical lesion that causes impaired chloroplast metabolism (and, hence, photosynthetic capacity) in plants exposed to water deficits is still a subject of controversy. In this study we used tobacco (Nicotiana tabacum L.) transformed with "antisense" ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) DNA sequences to evaluate whether Rubisco or some other enzymic step in the photosynthetic carbon reduction cycle pathway rate limits photosynthesis at low leaf water potential ([psi]w). These transformants, along with the wild-type material, provided a novel model system allowing for an evaluation of photosynthetic response to water stress in near-isogenic plants with widely varying levels of functional Rubisco. It was determined that impaired chloroplast metabolism (rather than decreased leaf conductance to CO2) was the major cause of photosynthetic inhibition as leaf [psi]w declined. Significantly, the extent of photosynthetic inhibition at low [psi]w was identical in wild-type and transformed plants. Decreasing Rubisco activity by 68% did not sensitize photosynthetic capacity to water stress. It was hypothesized that, if water stress effects on Rubisco caused photosynthetic inhibition under stress, an increase in the steady-state level of the substrate for this enzyme, ribulose 1,5-bisphosphate (RuBP), would be associated with stress-induced photosynthetic inhibition. Steady-state levels of RuBP were reduced as leaf [psi]w declined, even in transformed plants with low levels of Rubisco. Based on the similarity in photosynthetic response to water stress in wild-type and transformed plants, the reduction in RuBP as stress developed, and studies that demonstrated that ATP supply did not rate limit photosynthesis under stress, we concluded that stress effects on an enzymic step involved in RuBP regeneration caused impaired chloroplast metabolism and photosynthetic inhibition in plants exposed to water deficits.  相似文献   

19.
Viil  Juta  Ivanova  Hiie  Pärnik  Tiit 《Photosynthesis research》1999,60(2-3):247-256
An in vivo method for the estimation of kinetic parameters of partial reactions of carboxylation of ribulose 1,5-bisphosphate (RuBP) catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is described. Rubisco in barley, wheat and bean is different in the ability of its active centers to bind RuBP. The rate constant of the formation of the Rubisco-RuBP complex in these plants at 25 °C is 0.414, 0.245 and 0.660 mM-1 s-1, respectively. The rate constant of the reaction of the Rubisco-bound enediol with CO2 does not differ significantly in barley and wheat, and averages 66 mM-1 s-1. Decreased irradiance inhibits Rubisco in two ways: by reducing the concentration of operating catalytic sites and by decreasing the rate constant of binding of RuBP to Rubisco. High concentrations of CO2 inhibit Rubisco by decreasing the concentration of competent carboxylation centers, without any s ignificant influence upon the rate constants of partial reactions.  相似文献   

20.
There is evidence suggesting that in plants changes in the photosynthetic source/sink balance are an important factor that regulates leaf photosynthetic rate through affects on the leaf carbohydrate status. However, to resolve the regulatory mechanism of leaf photosynthetic rate associated with photosynthetic source/sink balance, information, particularly on mutual relationships of experimental data that are linked with a variety of photosynthetic source/sink balances, seems to be still limited. Thus, a variety of manipulations altering the plant source/sink ratio were carried out with soybean plants, and the mutual relationships of various characteristics such as leaf photosynthetic rate, carbohydrate content and the source/sink ratio were analyzed in manipulated and non-manipulated control plants. The manipulations were removal of one-half or all pods, removal of one-third or two-third leaves, and shading of one-third or one-half leaves with soybean plants grown for 8 weeks under 10 h light (24 degrees C) and 14 h darkness (17 degrees C). It was shown that there were significant negative correlations between source/sink ratio (dry weight ratio of attached leaves to other all organs) and leaf photosynthetic rate; source/sink ratio and activation ratio (percentage of initial activity to total activity) of Rubisco in leaf extract; leaf carbohydrate (sucrose or starch) content and photosynthetic rate; carbohydrate (sucrose or starch) content and activation ratio of Rubisco; amount of protein-bound ribulose-1,5-bisphosphate (RuBP) in leaf extract and leaf photosynthetic rate; and the amount of protein-bound RuBP and activation ratio of Rubisco. In addition, there were significant positive correlations between source/sink ratio and leaf carbohydrate (sucrose or starch) content; source/sink ratio and the amount of protein-bound RuBP; carbohydrate (sucrose or starch) content and amount of protein-bound RuBP and the activation ratio of Rubisco and leaf photosynthetic rate. The plant water content, leaf chlorophyll and Rubisco contents were not affected significantly by the manipulations. There is a previous report in Arabidopsis thaliana that the amount of protein-bound RuBP in leaf extract correlates negatively with the activation ratio of Rubisco in the leaf extract. Therefore, the results obtained from the manipulation experiments indicate that there is a regulatory mechanism for the leaf photosynthetic rate that correlates negatively with leaf carbohydrate (sucrose and starch) status and positively with the activation state of Rubisco under a variety of photosynthetic source/sink balances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号