共查询到20条相似文献,搜索用时 15 毫秒
1.
G(q), a heterotrimeric guanine nucleotide-binding protein, plays important roles such as the regulation of calcium mobilization and cell proliferation. This protein is considered as a promising drug target for the treatment of cardiac hypertrophy. Selective activation of G(q) would be quite useful for analyzing the role of G(q) in signaling pathways. We synthesized m3i3c-a peptide with 16 amino acid residues that corresponds to the junction between the C-terminus of the third intracellular loop and the sixth transmembrane helix (TM-VI) of human m3 muscarinic acetylcholine receptor, which couples to G(q) but not G(i2). At micromolar concentrations, this peptide was found to activate G(q) but not G(i2). This peptide is the first small compound that selectively activates G(q) but not G(i2). Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
2.
Savelkoul PJ Janickova H Kuipers AA Hageman RJ Kamphuis PJ Dolezal V Broersen LM 《Journal of neurochemistry》2012,120(4):631-640
Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn? Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn? Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific combination of nutrients acts synergistically in enhancing muscarinic M1 receptor responses, probably by facilitating receptor-mediated G protein activation. 相似文献
3.
Nabil M. S. Bakry Amina H. El-Rashidy Amira T. Eldefrawi Mohyee E. Eldefrawi 《Journal of biochemical and molecular toxicology》1988,3(4):235-259
Four nerve agents and one therapeutic organophosphate (OP) anticholinesterase (anti-ChE) bind to acetylcholine (ACh) receptors, inhibit or modulate binding of radioactive ligands to these receptors, and modify events regulated by them. The affinity of nicotinic (n) ACh receptors of Torpedo electric organs and most muscarinic (m) ACh receptors of rat brain and N1E-115 neuroblastoma cultures for the OP compounds was usually two to three orders of magnitude lower than concentrations required to inhibit 50% (IC-50) of ACh-esterase activity. However, a small population of m-ACh receptors had an affinity as high as that of ACh-esterase for the OP compound. This population is identified by its high-affinity [3H]-cis-methyldioxolane ([3H]-CD) binding. Although sarin, soman, and tabun had no effect, (O-ethyl S[2-(diisopropylamino)ethyl)] methyl phosphonothionate (VX) and echothiophate inhibited competitivel the binding of receptors. However, VX was more potent than echothiophate in inhibiting this binding and 50-fold more potent in inhibiting carbamylcholine (carb)-stimulated [3H]-cGMP synthesis in N1E-115 neuroblastoma cells—both acting as m receptor antagonist. All five OPs inhibited [3H]-CD binding, with IC-50s of 3, 10, 40, 100, and 800 nM for VX, soman, sarin, echothiophate, and tabun, respectively. The OP anticholinesterases also bound to allosteric sites on the n-ACh receptor (identified by inhibition of [3H]-phencyclidine binding), but some bound as well to the receptor's recognition site (identified by inhibition of [125I]-α-bungarotoxin binding). Soman and echothiophate in micromolar concentrations acted as partial agonists of the n-ACh receptor and induced receptor desensitization. On the other hand, VX acted as an open channel blocker of the activated receptor and also enhanced receptor desensitization. It is suggested that the toxicity of OP anticholinesterases may include their action on n-ACh as well as m-ACh receptors if their concentrations in circulation rise above micromolar levels. At nanomolar concentrations their toxicity is due mainly to their inhibition of ACh-esterase. However, at these low concentrations, many OP anticholinesterases (eg, VX and soman) may affect a small population of m-ACh receptors, which have a high affinity for CD. Such effects on m-ACh receptors may play an important role in the toxicity of certain OP compounds. 相似文献
4.
RGS proteins accelerate the GTPase activity of heterotrimeric G proteins at the plasma membrane. Association of RGS proteins with the plasma membrane can be mediated by interactions with other membrane proteins and by direct interactions with the lipid bilayer. Here we use fluorescence recovery after photobleaching (FRAP) to characterize interactions between RGS2 and M3 acetylcholine receptors (M3Rs), Galpha subunits and the lipid bilayer. Active Galpha(q) and M3Rs both recruited RGS2-EGFP to the plasma membrane. RGS2-EGFP remained bound to the plasma membrane between interactions with active Galpha(q), but rapidly exchanged between membrane-associated and cytosolic pools when recruited by M3Rs. 相似文献
5.
Identification of multiple allosteric sites on the M1 muscarinic acetylcholine receptor 总被引:1,自引:0,他引:1
Staurosporine and four staurosporine derivatives were docked on the rhodopsin-based homology model of the M1 muscarinic acetylcholine receptor in order to localize the possible allosteric sites of this receptor. It was found that there were three major allosteric sites, two of which are located at the extracellular face of the receptor, and one in the intracellular domain of the receptor. In the present study, the localization of these binding sites is described for the first time. The present study confirms the existence of multiple allosteric sites on the M1 muscarinic receptor, and lays the ground for further experimental and computational analysis to better understand how muscarinic receptors are modulated via their allosteric sites. These findings will also help to design and develop novel drugs acting as allosteric modulators of the M1 receptor, which can be used in the treatment of the Alzheimer's disease. 相似文献
6.
To better understand metabotropic/ionotropic integration in neurons we have examined the regulation of M1 muscarinic acetylcholine (mACh) receptor signalling in mature (> 14 days in vitro), synaptically-active hippocampal neurons in culture. Using a protocol where neurons are exposed to an EC(50) concentration of the muscarinic agonist methacholine (MCh) prior to (R1), and following (R2) a desensitizing pulse of a high concentration of this agonist, we have found that the reduction in M(1) mACh receptor responsiveness is decreased in quiescent (+tetrodotoxin) neurons and increased when synaptic activity is enhanced by blocking GABA(A) receptors with picrotoxin. The picrotoxin-mediated effect on M1 mACh receptor responsiveness was completely prevented by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor blockade. Inhibition of endogenous G protein-coupled receptor kinase 2 by transfection with the non-G(q/11)alpha-binding, catalytically-inactive (D110A,K220R)G protein-coupled receptor kinase 2 mutant, decreased the extent of M1 mACh receptor desensitization under all conditions. Pharmacological inhibition of protein kinase C (PKC) activity, or chronic phorbol ester-induced PKC down-regulation had no effect on agonist-mediated receptor desensitization in quiescent or spontaneously synaptically active neurons, but significantly decreased the extent of receptor desensitization in picrotoxin-treated neurons. MCh stimulated the translocation of diacylglycerol- sensitive eGFP-PKCepsilon, but not Ca2+/diacylglycerol-sensitive eGFP-PKCbetaII in both the absence, and presence of tetrodotoxin. Under these conditions, MCh-stimulated eGFP-myristoylated, alanine-rich C kinase substrate translocation was dependent on PKC activity, but not Ca2+/calmodulin. In contrast, picrotoxin-driven translocation of myristoylated, alanine-rich C kinase substrate was accompanied by translocation of PKCbetaII, but not PKCepsilon, and was dependent on PKC and Ca2+/calmodulin. Taken together these data suggest that the level of synaptic activity may determine the different kinases recruited to regulate M1 mACh receptor desensitization in neurons. 相似文献
7.
Transient hypoxia induces sequestration of M1 and M2 muscarinic acetylcholine receptors 总被引:1,自引:0,他引:1
Oxidative stress has been implicated in impairing muscarinic acetylcholine receptor (mAChR) signaling activity. It remains unclear, however, whether alterations in the cell surface distribution of mAChRs following oxidative stress contribute to the diminished mAChR signaling activity. We report here that M1 and M2 mAChRs, stably expressed in Chinese hamster ovary cells, undergo sequestration following transient hypoxic-induced oxidative stress (2% O2). Sequestration of M1 and M2 mAChRs following transient hypoxia was associated with an increase in phosphorylation of these receptors. Over-expression of a catalytically inactive G protein-coupled receptor kinase 2 (GRK2 K220R) blocked the increased phosphorylation and sequestration of the M2, but not M1, mAChRs following transient hypoxia. Hypoxia induced phosphorylation and sequestration of the M1 mAChR was, however, blocked by over-expression of a catalytically inactive casein kinase 1 alpha (CK1alpha K46R). These results are the first demonstration that M1 and M2 mAChRs undergo sequestration following transient hypoxia. The data suggest that increased phosphorylation of M1 and M2 mAChRs underlies the mechanism responsible for sequestration of these receptors following transient hypoxia. We report here that distinct pathways involving CK1alpha and GRK2 mediated sequestration of M1 and M2 mAChRs following transient hypoxic-induced oxidative stress. 相似文献
8.
A. V. Zholos T. B. Bolton A. V. Dresvyannikov M. V. Kustov V. V. Tsvilovskii M. F. Shuba 《Neurophysiology》2004,36(5-6):398-406
Acetylcholine, the main neurotransmitter of the parasympathetic nervous system, depolarizes various smooth muscles and initiates their contraction via activating muscarinic cholinergic receptors. In most visceral smooth muscle tissues, such as the gastrointestinal tract, airways, and the urinary system, muscarinic receptors are comprised of predominant M2 (about 80%)and minor M3 (about 20%) subtypes. Cholinergic excitation is generally mediated by the opening of ion channels selective for monovalent cations (under physiological conditions, Na+ and K+); among them the cationic channel of an about 60 pS unitary conductance has been recently identified as the main target for acetylcholine action. The signal transduction leading to channel opening is very complex and involves activation of Go protein (an M2 effect), activation of phospholipase C (an M3 effect), and [Ca2+]i and voltage dependence of channel opening. These multiple signaling pathways were difficult to reconcile with the channel gating mechanisms since only a simplified two-state channel mechanism (e.g., one open and one shut state) was until recently available. However, our recent studies of channel gating in isolated outside-out membrane patches revealed a greater complexity. Thus, this cationic channel shows transitions between at least eight states, four open and four shut, with strong connections between adjacent shut and open states. Therefore, four pairs of connected states have been identified, which showed voltage-dependent transitions in each pair of shut/open states. Since the membrane potential did not affect the relative proportions between the pairs, we have assumed that these effects are controlled by ligands that bind to the channel and, thus, stabilize its various open conformations. In this work, direct tests of the above hypothesis have been performed, and their results showed that spontaneous brief channel gating exists in the absence of receptor or G-protein activation, which is strongly voltage-dependent (increasing at depolarized potentials). Furthermore, this activity was potentiated at a low agonist concentration, while channel openings generally remained brief. An increasing receptor occupancy by the agonist produced long channel openings, indicating a shift of gating towards a long open/brief shut pair of the channel states. These findings are interpreted in the context of the established signal transduction pathways;certain predictions for the whole-cell current are also examined.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 446–454, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year. 相似文献
9.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken. 相似文献
10.
11.
Leigh Anne Swayne Alexandre Mezghrani Annie Varrault Jean Chemin Gyslaine Bertrand Stephane Dalle Emmanuel Bourinet Philippe Lory Richard J Miller Joel Nargeot Arnaud Monteil 《EMBO reports》2009,10(8):873-880
A previously uncharacterized putative ion channel, NALCN (sodium leak channel, non-selective), has been recently shown to be responsible for the tetrodotoxin (TTX)-resistant sodium leak current implicated in the regulation of neuronal excitability. Here, we show that NALCN encodes a current that is activated by M3 muscarinic receptors (M3R) in a pancreatic β-cell line. This current is primarily permeant to sodium ions, independent of intracellular calcium stores and G proteins but dependent on Src activation, and resistant to TTX. The current is recapitulated by co-expression of NALCN and M3R in human embryonic kidney-293 cells and in Xenopus oocytes. We also show that NALCN and M3R belong to the same protein complex, involving the intracellular I–II loop of NALCN and the intracellular i3 loop of M3R. Taken together, our data show the molecular basis of a muscarinic-activated inward sodium current that is independent of G-protein activation, and provide new insights into the properties of NALCN channels. 相似文献
12.
Expression of human muscarinic cholinergic receptors in tobacco 总被引:1,自引:0,他引:1
We expressed human m1, m2 and chimeric muscarinic cholinergic receptors (MAChR) in tobacco plants and in cultured BY2 tobacco cells using Agrobacterium-mediated transformation. The membranes of most transgenic plants and calli bound muscarinic ligands with appropriate affinities, kinetics and pharmacologic specificity, as determined by direct and competitive binding measurements using the muscarinic ligand [3H]quinuclidinyl benzylate (QNB). Membranes of untransformed plants and calli or those transformed with vector alone did not bind [3H]QNB. Preliminary experiments did not suggest regulation of endogenous plant G protein signalling pathways by the recombinant receptors. Membranes from one callus clone expressed m1 MAChR at the level of 2.0–2.5 pmol [3H]QNB bound per mg membrane protein, more than the number of m1 MAChR in mammalian brain and comparable to that expressed in Sf9 insect cells using baculovirus vectors. This work demonstrates high level expression of active G protein-coupled receptors in plants, such that signaling might be genetically reconstituted by co-expression of appropriate G proteins and effectors. 相似文献
13.
M Waelbroeck J Camus M Tastenoy E Mutschler C Strohmann R Tacke G Lambrecht J Christophe 《Chirality》1991,3(2):118-123
(R)-Hexahydro-difenidol has a higher affinity for M1 receptors in NB-OK 1 cells, pancreas M3 and striatum M4 receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7.0). (S)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance of the hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and receptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indicated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group (----dicyclidol) and of the cyclohexyl ring by a phenyl moiety (----difenidol) induced a large (4- to 80-fold) decrease in binding affinity for all muscarinic receptors. Difenidol had a significant preference for M1, M3, and M4 over M2 receptors; dicyclidol, by contrast, had a greater affinity for M1 and M4 than for M2 and M3 receptors. The binding free energy decrease due to replacement of the phenyl and the cyclohexyl groups of (R)-hexahydro-difenidol by, respectively, a cyclohexyl and a phenyl moiety was almost additive in the case of M4 (striatum) binding sites. In the case of the cardiac M2, pancreatic M3, or NB-OK 1 M1 receptors the respective binding free energies were not completely additive. These results suggest that the four (R)-hexahydro-difenidol "binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interactions with the M1, M2, and M3 muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
M. F. Pediconi A. M. Roccamo de Fernández F. J. Barrantes 《Neurochemical research》1993,18(5):565-572
The distribution and down-regulation of the muscarinic acetylcholine receptor (mAChR) were studied in dissociated cells from right (RCC) and left (LCC) cerebral cortex. For this purpose [3H]quinuclidinyl benzilate (QNB) and [3H]pirenzepine (Pz), two muscarinic antagonists, were used. The mAChR binding sites detected with [3H]QNB were asymmetrically distributed between the two hemispheres, the majority being found in the RCC. Asymmetry was also evident in the distribution of the mAChR subtypes (M1 and M2) detected with [3H]Pz. Under basal conditions the RCC had roughly 50% more M1 subtype than the LCC. The pharmacological and kinetic parameters were similar for both antagonists in RCC and LCC, indicating that the observed lateralization was due to a different density of the receptor rather than to different kinetics of binding of the two radioligands. After sustained stimulation with the agonist carbamoylcholine, the receptor sites detected with [3H]Pz, i.e. the M1 subtype of mAChR, decreased at a higher rate in the RCC (44%) than in the LCC (25% of controls), demonstrating that the down-regulation process is more active in the right than in the left cortex, and thus implying that there is better coupling between the stimulated mAChR and its effector system in the former. 相似文献
15.
16.
Uwada J Anisuzzaman AS Nishimune A Yoshiki H Muramatsu I 《Journal of neurochemistry》2011,118(6):958-967
Signaling by muscarinic agonists is thought to result from the activation of cell surface acetylcholine receptors (mAChRs) that transmit extracellular signals to intracellular systems. In N1E-115 neuroblastoma cells, we detected both plasma membrane and intracellular M(1) -mAChRs using both biochemical and pharmacological methods. In intact cells, both plasma membrane and intracellular M(1) -mAChRs were detected by the hydrophobic ligand probe, 1-quinuclidinyl-[phenyl-4-(3) H]-benzilate ([(3) H]-QNB) whereas the hydrophilic probe, 1-[N-methyl-(3) H] scopolamine ([(3) H]-NMS), detected only cell surface receptors. These probes detected comparable numbers of receptors in isolated membrane preparations. Immunohistochemical studies with M(1) -mAChR antibody also detected both cell-surface and intracellular M(1) -mAChRs. Carbachol-stimulated phosphatidylinositol hydrolysis and Ca(2+) mobilization were completely inhibited by a cell-impermeable M(1) antagonist, muscarinic toxin -7 and the G(q/11) inhibitor YM-254890. However, carbachol-stimulated extracellular-regulated kinase 1/2 activation was unaffected by muscarinic toxin-7, but was blocked by the cell-permeable antagonist, pirenzepine. extracellular regulated kinase 1/2 phosphorylation was resistant to blockade of G(q/11) (YM-254890) and protein kinase C (bisindolylmaleimide I). Our data suggest that the geographically distinct M(1) -mAChRs (cell surface versus intracellular) can signal via unique signaling pathways that are differentially sensitive to cell-impermeable versus cell-permeable antagonists. Our data are of potential physiological relevance to signaling that affects both cognitive and neurodegenerative processes. 相似文献
17.
Zhang X Wang F Chen X Li J Xiang B Zhang YQ Li BM Ma L 《Journal of neurochemistry》2005,95(1):169-178
Beta-arrestins are key negative regulators and scaffolds of G protein-coupled receptor (GPCR) signalling. Beta-arrestin1 and beta-arrestin2 preferentially bind to the phosphorylated GPCRs in response to agonist stimulation, resulting in receptor internalization and desensitization. The critical roles of GPCR kinases (GRKs)-catalyzed receptor phosphorylation and interaction of beta-arrestins with the phosphorylated receptor in receptor internalization are well established. However, emerging evidence suggests that an agonist-stimulated internalization mechanism that is independent of receptor phosphorylation may also be employed in some cases, although the molecular mechanism for the phosphorylation-independent GPCR internalization is not clear. The current study investigated the role of receptor phosphorylation and the involvement of different beta-arrestin subtypes in agonist-induced delta-opioid receptor (DOR) internalization in HEK293 cells. Results from flow cytometry, fluorescence microscopy, and surface biotin labelling experiments showed that elimination of agonist-induced DOR phosphorylation by mutation GRK binding or phosphorylation sites only partially blocked agonist-induced receptor internalization, indicating the presence of an agonist-induced, GRK-independent mechanism for DOR internalization. Fluorescence and co-immunoprecipitation studies indicated that both the wild-type DOR and the phosphorylation-deficient mutant receptor could bind and recruit beta-arrestin1 and beta-arrestin2 to the plasma membrane in an agonist-stimulated manner. Furthermore, internalization of both the wild-type and phosphorylation-deficient receptors was increased by overexpression of either type of beta-arrestins and blocked by dominant-negative mutants of beta-arrestin-mediated internalization, demonstrating that both phosphorylation-dependent and -independent internalization require beta-arrestin. Moreover, double-stranded RNA-mediated interference experiments showed that either beta-arrestin1 or beta-arrestin2 subtype-specific RNAi only partially inhibited agonist-induced internalization of the wild-type DOR. However, agonist-induced internalization of the phosphorylation-deficient DOR was not affected by beta-arrestin1-specific RNAi but was blocked by RNAi against beta-arrestin2 subtype. These data indicate that endogenous beta-arrestin1 functions exclusively in the phosphorylation-dependent receptor internalization, whereas endogenous beta-arrestin2, but not beta-arrestin1, is required for the phosphorylation-independent receptor internalization. These results thus provide the first evidence of different requirement for beta-arrestin isoforms in the agonist induced phosphorylation-dependent and -independent GPCR internalization. 相似文献
18.
19.
A highly purified rat urinary bladder smooth muscle cell culture was obtained by a modified enzymic isolation method, and the presence of functional muscarinic as well as beta-adrenergic receptors were subsequently determined. At 7-10 days of culture, cells became elongated and spindle-shaped showing a typical "hills and valleys" form. They were stained with anti-alpha-actin and anti-myosin antibodies. Radiolabeled ligand binding using [3H]N-methylscopolamine and [3H]CGP12177 showed that these cells expressed muscarinic and beta-adrenergic receptors. Stimulation of cultured cells with carbachol inhibited the forskolin-stimulated cyclic AMP formation, caused an elevation of intracellular Ca2+ concentration measured by fura-2 fluorometry. The latter response was almost completely blocked by 4-DAMP, a selective muscarinic M3 antagonist. On the other hand, stimulation of cultured cells with isoproterenol enhanced the basal cyclic AMP formation, which was reversed by carbachol. Therefore, the presence of functional muscarinic (both M2 and M3) as well as beta-adrenergic receptors was confirmed in pure culture of the rat bladder smooth muscle cells obtained by using an enzymic isolation method. 相似文献
20.
Nitric oxide (NO), previously demonstrated to participate in the regulation of the resting membrane potential in skeletal muscles via muscarinic receptors, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh release was estimated by the amplitude of endplate hyperpolarization (H-effect) following a blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine. The muscarinic agonists oxotremorine and muscarine lowered the H-effect and the M1 antagonist pirenzepine prevented this effect occurring at all. Another muscarinic agonist arecaidine but-2-ynyl ester tosylate (ABET), which is more selective for M2 receptors than for M1 receptors and 1,1-dimethyl-4-diphenylacetoxypiperidinium (DAMP), a specific antagonist of M3 cholinergic receptors had no significant effect on the H-effect. The oxotremorine-induced decrease in the H-effect was calcium and calmodulin-dependent. The decrease was negated when either NO synthase was inhibited by N(G)-nitro-L-arginine methyl ester or soluble guanylyl cyclase was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The target of muscle-derived NO is apparently nerve terminal guanylyl cyclase, because exogenous hemoglobin, acting as an NO scavenger, prevented the oxotremorine-induced drop in the H-effect. These results suggest that oxotremorine (and probably also non-quantal ACh) selectively inhibit the non-quantal secretion of ACh from motor nerve terminals acting on post-synaptic M1 receptors coupled to Ca(2+) channels in the sarcolemma to induce sarcoplasmic Ca(2+)-dependent synthesis and the release of NO. It seems that a substantial part of the H-effect can be physiologically regulated by this negative feedback loop, i.e., by NO from muscle fiber; there is apparently also Ca(2+)- and calmodulin-dependent regulation of ACh non-quantal release in the nerve terminal itself, as calmidazolium inhibition of the calmodulin led to a doubling of the resting H-effect. 相似文献