首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of deoxyribonucleic acid (DNA) during in vivo infection of chick epithelium with fowlpox virus was examined by incorporation of tritiated thymidine into the acid-insoluble fraction. The proportion of precursor incorporated into host and viral DNA at various times after infection was determined by chromatography on columns of methylated albumin-kieselguhr. The first 60-hr period of infection was characterized by the synthesis of predominantly host DNA, the rate of production of which increased markedly over the control between 36 and 48 hr postinoculation (PI). Although the replication of viral DNA began between 12 and 24 hr PI, the rate of synthesis was very low during the first 60 hr. In contrast, an abrupt increase in the rate of viral DNA synthesis occurred between 60 and 72 hr PI, concomitantly with a sharp decline of host DNA synthesis. Subsequently, between 72 and 96 hr, the ratio of synthesis of viral DNA to host DNA progressively increased to a maximum of greater than 2:1. The temporal relationship of this biphasic pattern of host and viral DNA synthesis to hyperplasia and viral replication is discussed.  相似文献   

2.
3.
Synthesis of reovirus ribonucleic acid in L cells   总被引:21,自引:0,他引:21  
Kudo, Hajime (The Wistar Institute of Anatomy and Biology, Philadelphia, Pa.), and A. F. Graham. Synthesis of reovirus ribonucleic acid in L cells. J. Bacteriol. 90:936-945. 1965.-There is no inhibition of protein or deoxyribonucleic acid (DNA) synthesis in L cells infected with reovirus until the time that new virus starts to form about 8 hr after infection. At this time, both protein synthesis and DNA synthesis commence to be inhibited. Neither the synthesis of ribosomal ribonucleic acid (RNA) nor that of the rapidly labeled RNA of the cell nucleus is inhibited before 10 hr after infection. Actinomycin at a concentration of 0.5 mug/ml does not inhibit the formation of reovirus, although higher concentrations of the antibiotic do so. Pulse-labeling experiments with uridine-C(14) carried out in the presence of 0.5 mug/ml of actinomycin show that, at 6 to 8 hr after infection, two species of virus-specific RNA begin to form and increase in quantity as time goes on. One species is sensitive to ribonuclease action and the other is very resistant. The latter RNA is probably double-stranded viral progeny RNA, and it constitutes approximately 40% of the RNA formed up to 16 hr after infection. The function of the ribonuclease-sensitive RNA is not yet known. Synthesis of both species of RNA is inhibited by 5 mug/ml of actinomycin added at early times after infection. Added 6 to 8 hr after infection, when virus-specific RNA has already commenced to form, 5 mug/ml of actinomycin no longer inhibit the formation of either species of RNA.  相似文献   

4.
In vaccinia virus-infected cell cultures, cellular protein synthesis was inhibited 50% at 2 hr postinfection (PI) and 80 to 90% by 4 hr PI. Input virus was responsible for this inhibition. Five early proteins, coded for by the viral genome, could be detected at 2 to 3 hr PI. Normally, their synthesis did not continue beyond 6 hr PI, at which time synthesis of a different set of proteins began. When DNA replication was blocked, synthesis of these early proteins continued until 9 to 12 hr PI. The bulk of the proteins which were incorporated into mature virus were synthesized at 8 hr PI and thereafter. The time of their formation was close to the time at which virus maturation occurred. However, 15% of the protein found in mature virus was synthesized early in the infectious cycle. The quantity of “early viral protein” which was not incorporated into mature virus was almost as large as the quantity of viral protein which did appear in mature virus. The “early” and “late” proteins could be shown to have separate and distinct immunological properties. The role of this large quantity of “early” protein is discussed.  相似文献   

5.
A temperature-sensitive simian virus 40 (SV40) mutant, tsTNG-1, has been isolated from nitrosoguanidine-treated and SV40-infected African green monkey kidney (CV-1) cultures. Replication of virus at the nonpermissive temperature (38.7 C) was 3,000-fold less than at the permissive temperature (33.5 C). Plaque formation by SV40tsTNG-1 deoxyribonucleic acid (DNA) on CV-1 monolayers occurred normally at 33.5 C but was grossly inhibited at 38.7 C. The time at which virus replication was blocked at 38.7 C was determined by temperature-shift experiments. In shift-up experiments, cultures infected for various times at 33.5 C were shifted to 38.7 C. In shift-down experiments, cultures infected for various times at 38.7 C were shifted to 33.5 C. All cultures were harvested at 96 hr postinfection (PI). No virus growth occurred when the shift-up occurred before 40 hr PI. Maximum virus yields were obtained at 96 hr PI when the shift-down occurred at 66 hr, but only about 15% of the maximum yield was obtained when the shift-down occurred at 76 hr PI. These results indicate that SV40tsTNG-1 contains a conditional lethal mutation in a late viral gene function. Mutant SV40tsTNG-1 synthesized T antigen, viral capsid antigens, and viral DNA, and induced thymidine kinase activity at either 33.5 or 38.7 C. The properties of the SV40 DNA synthesized in mutant-infected CV-1 cells at 33.5 or 38.7 C were very similar to those of SV40 DNA made in parental virus-infected cells, as determined by nitrocellulose column chromatography, cesium-chloride-ethidium bromide equilibrium centrifugation, and by velocity centrifugation in neutral sucrose gradients. Mutant SV40tsTNG-1 enhanced cellular DNA synthesis in primary cultures of mouse kidney cells at 33.5 and 38.7 C and also transformed mouse kidney cultures at 36.5 C. SV40tsTNG-1 was recovered from clonal lines of transformed cells after fusion with susceptible CV-1 cells and incubation of heterokaryons at 33.5 C, but not at 38.7 C.  相似文献   

6.
In one-step growth experiment of measles virus (MV) in Vero cells at 39 C, the appearance of MV infectivity was delayed for 24 hr and the maximum titer was reduced by approximately 1,000-fold, when compared with those at 35 C. MV infectivity was thermolabile at the high temperature. Penetration was rather enhanced at 39 C. By Northern blot hybridization, viral RNAs including 50S genome-sized RNA and mRNAs were first detectable 24 hr post-infection (PI) at 35 C and 36 hr PI at 39 C, respectively. Rapid degradation of viral mRNAs was not observed in the infected cells at 39 C. The synthesis of N, F, and M proteins was relatively reduced at the high temperature and appearance of the other viral protein was delayed, in agreement with the time course of viral RNA synthesis. All these data suggest that less efficient synthesis of viral RNA, restriction of synthesis of N, F, and M proteins at translational level and thermolability of infectivity are all involved in the suppressed MV production in Vero cells at 39 C.  相似文献   

7.
Amsacta moorei entomopoxvirus DNA synthesis was detected in Estigmene acrea cells by [3H]thymidine incorporation 12 hr after virus inoculation. Hybridization of 32P-labeled Amsacta entomopoxvirus DNA to the DNA from virus-infected cells indicated that viral-specific DNA synthesis was initiated between 6 and 12 hr after virus inoculation. A rapid increase in the rate of virus DNA synthesis was detected from 12 to 24 hr after virus inoculation. Amsacta entomopoxvirus protein biosynthesis in E. acrea cells was studied by [su35S]methionine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extracellular virus and virus-containing occlusion bodies were first detected in virus-infected cell cultures 18 hr after virus inoculation. Thirty-seven virus structural proteins, ranging in molecular weight from 13,000 to 208,000 were detected in both occluded and nonoccluded forms of the virus. The biosynthesis of virus structural proteins increased rapidly from 18 to 34 hr after infection. A major viral-induced protein corresponding in molecular weight to viral occlusion body protein (110,000) was detected approximately 24 hr after virus inoculation.  相似文献   

8.
The patterns of nucleic acid synthesis in insect cells infected with iridescent virus types 2 and 6 has been examined using nucleic acid hybridization techniques. Virus-specific RNA synthesis was detected 24 hr after infection. Virus-specific DNA synthesis was detected 96 hr after infection. Host-specific nucleic acid synthesis declined throughout infection, and host-specific nucleic acid synthesis was detected only in the first 48 hr of infection. The synthesis of iridescent virus progeny DNA molecules precedes the appearance of mature iridescent virus particles.  相似文献   

9.
A multiplicity of infection (m.o.i.) of 25 or 50 mean tissue culture-infective doses (TCID50) of Autographa californica NPV per cell of a TN-368 cell line initially infected >90% of attached cells whereas an m.o.i. of 1 or 5 TCID50/cell initially infected <50% of the cells. An immunoperoxidase technique first detected nucleocapsid antigens at 6–12 hr postinfection (PI) and polyhedral protein antigen 12–18 hr PI, which was followed 4–6 hr later by polyhedra formation. At a m.o.i. of 50, the extracellular virus titer (nonoccluded progeny virus) increased between 6 and 12 hr PI while at m.o.i. of 25, 5, and 1, the titer increased at 12–18 hr PI. Antisera to nucleocapsids and polyhedral protein were specific and also failed to react with viral envelope antigens.  相似文献   

10.
Two monoclonal antibodies were prepared against varicella-zoster virus proteins. One of the monoclonal antibodies (10.2) reacted only with the nuclei of infected cells and immunoprecipitated one nonglycosylated late viral protein (125,000 molecular weight). The other monoclonal antibody (19.1) with neutralizing activity, reacted with membrane antigens of infected cells and with the varicella-zoster virus envelope and immunoprecipitated two late major viral glycoproteins (gp1 and gp3). Synthesis of the 125,000-molecular-weight protein, gp1, and gp3 began at 20 to 22 h postinfection, 2 h after the peak of viral DNA synthesis, and continued until 29 h postinfection, when the first progeny virus appeared in infected cells. Pulse-chase experiments showed that during pulse-labeling, only gp1 was detected, whereas during the chase period, gp1 as well as gp3 was detected in infected cells. Under nonreducing conditions, gp3 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 130,000-molecular-weight protein as compared with the 62,000-molecular-weight species obtained when gels were resolved under reducing conditions. This finding indicates that gp3 is a dimer that is disulfide linked.  相似文献   

11.
Terrinha, António M. (National Laboratory for Veterinary Research, Lisbon, Portugal), José D. Vigário, José L. Nunes Petisca, J. Moura Nunes, and Armando L. Bastos. Autoradiographic study on sheeppox virus infection. J. Bacteriol. 90:1703-1709. 1965.-An autoradiographic study of sheep embryo cell cultures infected with sheeppox virus showed that viral deoxyribonucleic acid (DNA) synthesis starts at 10 to 11 hr after infection. The number of cells which supported viral DNA synthesis increased until 22 to 23 hr. The extent of cytoplasmic continuity between cells might permit the cell-to-cell transfer of mature virus or perhaps viral DNA. There is evidence of an inhibitory action on cellular DNA synthesis in cells which supported viral DNA synthesis, but, in all cellular populations infected, a small proportion of cells was encountered which supported viral DNA synthesis in compartment S. No evidence for cellular division of sheeppox virus-infected cells has been found. Enzymatic digestion by deoxyribonuclease combined with autoradiography provided an indirect demonstration of the time at which the first viral structural proteins were found to be synthesized, that is, 18 hr after infection. A progressive increase in synthesis of viral structural proteins was demonstrated. Virus maturation occurred within the cells in the cytoplasm, predominantly in the same sites as viral DNA synthesis.  相似文献   

12.
Adsorbed but not penetrated virus can be removed from the CMV-infected cell membrane by digestion with cystine-activated papain. Membrane antigens appear on 80-90% of the infected cells 14-20 hr after infection as a result of de novo protein synthesis. Antigen synthesis can be blocked with inhibitors of protein synthesis, but not with DNA inhibitors. In the early stage of infection, pooled human convalescent serum reacted well with the membrane antigen, whereas pooled antiserum of rabbits immunized with CMV virion suspension gave a positive reaction with a small proportion of the cells. After the 48th hr, both the human and the rabbit serum pool reacted with the membrane of the infected cells. Absorption with cell cultured for 24 hr after CMV infection reduced the neutralization titres of the antisera only slightly but the titre reduction was considerable when absorption was performed with cells cultured for more than 48 hr after infection. It is concluded that on the membrane of cells productively infected by CMV at least two membrane antigens are present, one coded for by the DNA of the parent virus and another which is the product of the DNA of the virus progeny. The two antigens can be differentiated serologically.  相似文献   

13.
Cultures of human embryonic lung (HEL) cells in different physiological states were studied for their susceptibility to infection with human cytomegalovirus (CMV) with respect to production of infectious virus, synthesis of viral antigens, and virus-induced stimulation of cellular DNA synthesis. In general, subconfluent, actively growing cells yielded higher amounts of infectious virus than did confluent contact-inhibited cells. The higher yield of infectious virus was correlated with a greater percentage of cells producing viral antigens within the first 48 h after infection. In confluent cultures, 25 to 50% of the cells produced viral antigens within the first 48 h postinfection. This proportion did not change over a 10-fold range of multiplicity of infection, indicating that many of the cells in confluent cultures did not support productive infection. However, virtually all the cells in subconfluent cultures were susceptible. Also, in contrast to herpes simplex virus and pseudorabies virus, infectious CMV is not produced by cells treated with 5-fluorouracil and thymidine. Virus-induced stimulation of cellular DNA synthesis in cells infected at high multiplicities of infection could be detected only in confluent cultures, in which cellular DNA synthesis had been previously suppressed, but could not be detected in similarly treated cultures of subconfluent cells. The lack of detectable stimulation of cellular DNA synthesis in the latter was related to the fact that practically all the cells in the culture synthesized viral antigens within the first 48 h after infection, productive infection and detectable synthesis of cellular DNA being mutually exclusive.  相似文献   

14.
Cycloheximide and 6-azauridine were employed to study the time course of measles virus protein and nucleic acid syntheses in AV3 cells. Synthesis of ribonucleic acid (RNA) essential for infectivity was first detected at 6 hr and increased concurrently with the formation of essential protein. Maximum levels of virus-specific RNA and protein were present by 18 hr, a time when only 5% of progeny virus was detected. Essential RNA and protein syntheses preceded the formation of infectious virus by at least 10 to 12 hr. The time course of RNA and protein syntheses essential for the formation of complement-fixing (CF) antigen and salt-dependent agglutinin (SDA) was also determined. RNA synthesis essential for the formation of SDA was first detected at 2 hr and was present maximally by 6 hr, whereas SDA-protein increased concurrently with the protein essential for infectivity. This suggested that the last protein essential for infectivity may be SDA. RNA synthesis essential for the formation of CF antigen was first detected at 4 hr, while CF-protein increased at 5 hr and preceded SDA-protein and protein essential for infectivity by approximately 3 hr. Reversal of inhibition of protein synthesis by cycloheximide indicated that early protein synthesis (1 to 3 hr) was required for the formation of infectious virus. The data suggest that the relatively long eclipse period observed with measles virus is related to a long maturation period rather than to late formation of early proteins, viral RNA, or structural proteins.  相似文献   

15.
W K Yang  D M Yang    J O Kiggans  Jr 《Journal of virology》1980,36(1):181-188
Formation of viral closed circular supercoiled DNA duplexes and production of progeny virus were both inhibited in cultured mouse cells treated with cycloheximide in the first 4 h of type C retrovirus infection. With different doses of cycloheximide to cause different degrees of inhibition, the number of viral supercoiled DNA duplexes detected in the cells at 11 h showed an apparent correlation with the amount of progeny virus produced in the 12- to 22-h period of infection. A slight accumulation of the full-genome linear duplex and an open circular duplex of viral DNA intermediate was observed in the cycloheximide-treated cells. Cycloheximide given to the cells during the time of conversion of viral DNA from linear to supercoiled duplex forms (6 to 11 h after virus inoculation) did not inhibit the conversion. These kinetic data suggest that a cycloheximide-sensitive metabolic process, probably early viral protein synthesis, is required for retrovirus replication and supercoiled viral DNA formation in the cell.  相似文献   

16.
Several different forms of progeny viral DNA can be identified in polyoma virus (Py)-infected mouse L-cells. The majority comprise mature form I superhelical DNA and the circular, double-stranded "theta" replicating intermediates in which the progeny DNA strands never exceed the unit genome length of the template. There is formed, in addition, a minority fraction of multimeric, linear, double-stranded Py DNA molecules that sediment heterogeneously at 28 to 35S and greater than 35S. Restriction enzyme analysis of these large Py DNA molecules reveals them to be tandem arrays of multiple unit genome lengths, covalently linked head to tail. It is estimated that the 28 to 35S multimeric DNA has an average size of about 20 megadaltons, made up of 6 to 20 Py genome units. The greater than 35S Py DNA is, of course, larger. Kinetic analysis indicates that formation of the monomeric progeny viral DNA and the 28 to 35S multimeric Py DNA reaches a peak at about 35 to 36 h postinfection. Synthesis of the very large linear molecules of greater than 35S is first detected after this interval and continues thereafter. The de novo synthesis of all of these progeny Py DNA molecules proceeds apparently normally in Py-infected tsA1S9 mouse L-cells incubated at 38.5 degrees C under conditions which restrict normal cellular DNA replication. These findings suggest that the cellular DNA topoisomerase II activity, encoded in the tsA1S9 locus (R. W. Colwill and R. Sheinin, submitted for publication), is not required for de novo formation of any form of Py DNA. However, the total amount made and the rate of synthesis of the large molecular weight Py DNA are affected very late in temperature-inactivated tsA1S9 cells.  相似文献   

17.
In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab')(2) fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.  相似文献   

18.
Kilham rat virus (KRV) is adsorbed into the rat nephroma cell within 1 hr after infection. There follows a latent period of about 12 hr during which less than 1% of the input infectious virus can be accounted for. New infectious virions can be detected at about 12 hr and the maximal yield of virus is attained by 23 hr after infection. The increase in final virus yield is about 200-fold over that found in the latent period. During this 23-hr period of virus growth, the rate of protein synthesis remains 75 to 100% of that in the uninfected cell. Ribonucleic acid (RNA) synthesis during this period is maintained at 100 to 150% of that found in the control cells. The addition of the inhibitor of deoxyribonucleic acid (DNA) synthesis, 5-fluoro-deoxyuridine (FUDR), up to 8 hr after infection completely suppresses virus production. After 8 hr, viral DNA production has started and FUDR inhibition progressively decreases until by 23 hr the addition of the inhibitor no longer causes a reduced virus yield. Viral DNA synthesis once initiated is required for the remainder of the 23-hr virus cycle. Viral DNA synthesis probably begins about 4 hr before the production of infectious virions. In the KRV-infected cells, DNA synthesis decreased sharply for 6 to 7 hr after infection in comparison to the uninfected cell. At 7 to 8 hr after infection, DNA synthesis in the infected cell increased and was maintained at a higher level than in the control cells for the rest of the virus growth period.  相似文献   

19.
The synthesis of viral ribonucleic acid (RNA) was detected within 2 hr after infection with LSc poliovirus at 35 C. This RNA eluted as a single peak with 0.9 m NaCl on methylated albumin celite columns, was sensitive to ribonuclease, precipitated in the presence of 2 m LiCl, and had an S(20) value at 34 +/- 2 in linear sucrose gradients. When cells were infected at 39 to 40 C, there was also early synthesis of RNA. However, 2 hr after infection this synthesis was drastically inhibited. The absence of net RNA synthesis at 39 to 40 C during the late stages of infection was not caused by rapid degradation of newly formed RNA, since the RNA produced between 1 and 2 hr at 39 to 40 C was still present 3.5 hr after infection. There was a 3 log(10) inhibition in the production of infectious virus when p-fluorophenylalanine was present in the medium at a concentration of 25 mug/ml. This concentration of analogue had little effect upon the production of viral polymerase and viral RNA. Virus grown in the presence of analogue at a concentration of 10 mug/ml exhibited increased heat sensitivity compared to control virus. However, viral polymerase exhibited no change in sensitivity to heat or manganese when cells were exposed to 25 mug of p-fluorophenylalanine per ml during infection. p-Fluorophenylalanine had a relatively selective effect on viral capsid protein but did not reverse the inhibition of synthesis of viral RNA at 39 to 40 C.  相似文献   

20.
The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号