首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of agricultural practices on the Zea mays L. endophytic community   总被引:2,自引:0,他引:2  
Agricultural practices are known to alter bulk soil microbial communities, but little is known about the effect of such practices on the plant endophytic community. We assessed the influence of long-term applications (20 years) of herbicides and different fertilizer types on the endophytic community of maize plants grown in different field experiments. Nested PCR-denaturing gradient gel electrophoresis (DGGE) analyses targeting general bacteria, type I or II methanotrophs, actinomycetes, and general fungi were used to fingerprint the endophytic community in the roots of Zea mays L. Low intraplant variability (reproducible DGGE patterns) was observed for the bacterial, type I methanotroph, and fungal communities, whereas the patterns for endophytic actinomycetes exhibited high intraplant variability. No endophytic amplification product was obtained for type II methanotrophs. Cluster and stability analysis of the endophytic type I methanotroph patterns differentiated maize plants cultivated by using mineral fertilizer from plants cultivated by using organic fertilizer with a 100% success rate. In addition, lower methanotroph richness was observed for mineral-fertilized plants than for organically fertilized plants. The use of herbicides could not be traced by fingerprinting the endophytic type I methanotrophs or by evaluating any other endophytic microbial group. Our results indicate that the effect of agrochemicals is not limited to the bulk microbial community but also includes the root endophytic community. It is not clear if this effect is due to a direct effect on the root endophytic community or is due to changes in the bulk community, which are then reflected in the root endophytic community.  相似文献   

2.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the alpha subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

3.
The effect of transgenic Bt 176 maize on the rhizosphere bacterial community has been studied with a polyphasic approach by comparing the rhizosphere of Bt maize cultivated in greenhouse with that of its non transgenic counterpart grown in the same conditions. In the two plants the bacterial counts of the copiotrophic, oligotrophic and sporeforming bacteria, and the community level catabolic profiling, showed no significant differences; differences between the rhizosphere and bulk soil bacterial communities were evidenced. Automated ribosomal intergenic spacer analysis (ARISA) showed differences also in the rhizosphere communities at different plant ages, as well as between the two plant types. ARISA fingerprinting patterns of soil bacterial communities exposed to root growth solutions, collected from transgenic and non transgenic plants grown in hydroponic conditions, were grouped separately by principal component analysis suggesting that root exudates could determine the selection of different bacterial communities.  相似文献   

4.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

5.
6.
Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.  相似文献   

7.
The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.  相似文献   

8.
自然湿地土壤产甲烷菌和甲烷氧化菌多样性的分子检测   总被引:3,自引:0,他引:3  
佘晨兴  仝川 《生态学报》2011,31(14):4126-4135
自然湿地是CH4排放的重要来源之一。产甲烷菌和甲烷氧化菌是介导自然湿地甲烷循环的重要功能菌群。开展产甲烷菌和甲烷氧化菌多样性的检测研究有助于揭示微生物介导的甲烷循环以及自然湿地甲烷排放的时空异质性。传统基于培养的检测方法已被证实无法充分描述产甲烷菌和甲烷氧化菌的多样性,而分子检测方法为自然湿地土壤产甲烷菌和甲烷氧化菌的多样性检测提供了一种更准确和科学的工具。本文综述了自然湿地土壤产甲烷菌和甲烷氧化菌的定性和定量分子检测方法,包括末端限制性片段长度多态性(T-RFLP)、变性梯度凝胶电泳(DGGE)、荧光原位杂交(FISH)和实时定量PCR(real-time qPCR),重点分析了分子检测中两类重要的标记基因,总结了不同类型自然湿地产甲烷菌和甲烷氧化菌群落多样性的最新成果,提出了我国在该领域今后应深入研究探讨的一些问题及建议。  相似文献   

9.
Agricultural practices, such as mineral nitrogen fertilization, have an impact on the soil's ability to oxidize methane, but little is known about the shifts in the methanotrophic community composition associated with these practices. Therefore, the long-term effect of both mineral (NH4NO3) and organic (manure and GFT-compost) fertilizer applications on the soil methanotrophic community activity and structure were investigated. Both high and low affinity methane oxidation rates were lower in the soil treated with mineral fertilizer compared to the other soils. An enhanced nitrate concentration was observed in the mineral fertilized soil but nitrate did not show a direct affect on the high affinity methane oxidation. In contrast, the low affinity methane oxidation was slowed down by increased nitrate concentrations, which suggests a direct effect of nitrate on low affinity methane oxidation. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments specific for methanotrophs revealed a distinct community between the mineral and organic fertilized soils as extra Type I methanotrophic bands (phylotypes) became visible in the organic fertilized soils. These phylotypes were not visible in the patterns of the added organic fertilizers suggesting an indirect effect of the organic fertilizers on the methanotrophic community. Additionally, a molecular analysis was performed after the low affinity methane oxidation test. The enhanced methane concentrations used in the test enriched certain low affinity methanotrophs in the organic fertilized soils but not in the mineral fertilized soil. Supporting the molecular and functional observations, fatty acids characteristic for methanotrophs were less abundant in the soil treated with mineral fertilizer compared to the soil treated with compost. In conclusion, the function and molecular and chemical composition of the methanotrophic community are all altered in soil fertilized with mineral fertilizer.  相似文献   

10.
11.
Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental Forest) and to investigate their relationships with environmental conditions and soil carbonaceous gases. As assessed by tagged Illumina sequencing of the 16S rRNA gene, community composition and structure differed significantly among three landscape positions: high upland zones (HUZ), low upland zones (LUZ), and riparian zones (RZ). Soil depth effects on phylogenetic diversity and β-diversity varied across landscape positions, being more evident in RZ than in HUZ. Mantel tests revealed significant correlations between microbial community assembly patterns and the soil environmental factors tested (water content, temperature, oxygen, and pH) and soil carbonaceous gases (carbon dioxide concentration and efflux and methane concentration). With one exception, methanogens were detected only in RZ soils. In contrast, methanotrophs were detected in all three landscape positions. Type I methanotrophs dominated RZ soils, while type II methanotrophs dominated LUZ and HUZ soils. The relative abundances of methanotroph populations correlated positively with soil water content (R = 0.72, P < 0.001) and negatively with soil oxygen (R = −0.53, P = 0.008). Our results suggest the coherence of soil microbial communities within and differences in communities between landscape positions in a subalpine forested watershed that reflect historical and contemporary environmental conditions.  相似文献   

12.
【目的】研究除草剂"使它隆"施用后对玉米根部不同微生环境细菌群落结构和多样性的影响。【方法】利用Illumina Miseq高通量测序技术,对玉米根系内生菌、根际和非根际土壤细菌16S rRNA的V4–V5可变区序列进行测定,分析不同生长期喷施除草剂使它隆对玉米土壤细菌及根系内生菌群落结构和多样性的影响。【结果】本研究15个样品共得到544393条有效序列,333565条优质序列。多样本共有OTU分析表明,非根际和根际土壤的群落结构更为相似,在一定程度上说明玉米根部相关细菌的定殖具有选择性并且是从根际到根系逐步专一化。丰度等级曲线和Alpha多样性结果显示非根际和根际土壤群落的丰富度和均匀度较高,而玉米根系内生菌群落的丰富度和均匀度都比较低,且成熟期玉米根系内生菌群落的丰富度在施用除草剂使它隆后下降比较剧烈。群落组成分析发现,使它隆除草后,玉米根部相关细菌各时期在门及属水平上的分布都发生了较大变化。菌群代谢功能预测结果表明玉米生长从苗期到成熟期,微生物的生长压力逐渐加大,需要消耗更多的能量用于新陈代谢和环境适应。【结论】施用除草剂使它隆后会降低玉米根部土壤细菌群落的多样性,使它隆对成熟期玉米根系内生菌群落影响最为显著。  相似文献   

13.
钟文辉  蔡祖聪  尹力初  张鹤 《生态学报》2007,27(10):4011-4018
以中国科学院红壤生态试验站的发育于第四纪红粘土的种稻红壤为研究对象,采用PCR-DGGE方法研究了长期施用无机肥对土壤微生物群落多样性的影响。在种植双季稻、连续13a施用不同无机肥后,土壤中细菌、古菌、放线菌和真菌的群落结构发生了较大的变化。未种植水稻的土壤与种稻土壤间四类微生物SSUrDNADGGE带谱相似性只有33%~66%。施磷肥的处理NP、PK、NPK之间微生物群落结构相似性较高,4类微生物的SSUrDNADGGE带谱相似性高达75%~81%。施氮钾肥(NK)、不施肥(CK)处理与施磷肥处理间土壤微生物群落结构的差异较大,其四类微生物的SSUrDNADGGE带谱相似性分别为69%~77%、55%~77%。研究的目的是深入地了解土壤中微生物群落的多样性,为科学施肥、合理利用土壤、保护微生物多样性和实现农业生态系统的可持续发展提供科学依据。  相似文献   

14.
PCR-denaturing gradient gel electrophoresis (DGGE) was used to determine diversity and community of endophytic actinomycetes distributed within the roots of Aquilaria crassna Pierre ex Lec (eaglewood). DNA was extracted from plant roots collected from one plantation in Nakhonnayok province and three plantations in Phetchabun province of Thailand. A nested-PCR was used to specifically amplify all actinobacterial groups. PCR-DGGE analysis of a variable region 3 (V3) of 16S rDNA confirmed the presence of endophytic actinomycetes in genera Nocardia, Pseudonocardia, Streptomyces and Actinomadura within the roots of eaglewood from Phetchabun province. Actinomycetes in genera Nocardia, Nonomuraea, Pseudonocardia and Actinomadura were found to inhabit abundantly in the roots of eaglewood from Nakhonnayok province. Actinobacterial community structures within the roots of this plant grown in two provinces were different from each other based on the generated dendrogram and Sorensen’s index. These results suggest that different locations resulted in different endophytic actinomycetes communities within the plant. Besides actinobacterial community structure, genetic diversity was analyzed based on species diversity and simple index. DGGE exhibited many species of actinomycetes inhabited as endophytes. The highest diversity of endophytic actinomycetes was found in the roots from a plantation in Nakhonnayok province and one of the plantations in Phetchabun province. This is the first report of the ecology and the community of endophytic actinomycetes colonized and imbedded within the roots of eaglewood plant.  相似文献   

15.
Rice field soil with a nonsaturated water content induced CH4 consumption activity when it was supplemented with 5% CH4. After a lag phase of 3 days, CH4 was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH4 mixing ratios (i.e., 5 ppmv). The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type I methylotrophs (members of the gamma subdivision of the class Proteobacteria [gamma-Proteobacteria]) and type II methylotrophs (members of the alpha-Proteobacteria) were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH4 was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH4. The structure of the methylotroph community as determined with the specific primer sets was less complex; this community consisted of both type I and type II methanotrophs related to the genera Methylobacter, Methylococcus, and Methylocystis. DGGE profiles of PCR products amplified with functional gene primer sets that targeted the mxaF and pmoA genes revealed that there were pronounced community shifts when CH4 oxidation began. High CH4 concentrations stimulated both type I and II methanotrophs in rice field soil with a nonsaturated water content, as determined with both ribosomal and functional gene markers.  相似文献   

16.
Landfill sites are responsible for 6-12% of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Methanotroph communities were analysed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competetive advantage of type II methanotrophs over type Ia methanotrophs was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated.  相似文献   

17.
【背景】由于土壤放线菌中获得新化合物日益困难,抗生素滥用使致病菌耐药性不断增加,人们转向研究植物内生放线菌以期发现新化合物。【目的】探究西双版纳热带雨林有毒植物内生放线菌的多样性,为开发新药提供具有潜在生物活性的菌株。【方法】通过Illumina Hi Seq高通量测序和纯培养方法分析箭毒木、八角枫、马缨丹3种有毒植物的内生放线菌群落结构组成,利用纸片扩散法筛选抑菌活性,通过PCR扩增检测7类化合物合成基因。【结果】高通量测序的多样性分析和群落结构分析得出:3种有毒植物在门分类水平检测出古菌域的2个门、细菌域的18个门和暂定的Rsa HF231、WD272门;在属分类水平检测出30个属的放线菌,八角枫和马缨丹的微生物群落结构比箭毒木更丰富。纯培养分离获得11个属34株菌,分离自箭毒木的菌株比八角枫和马缨丹的菌株更多,而且大多数高通量检测出的菌种不能通过纯培养获得。抑菌活性检测结果显示:抗菌活性作用明显的菌株以链霉菌属为主。链霉菌属的NRPS和PKS基因的检出率明显高于其他化合物合成基因。【结论】有毒植物内生放线菌多样性非常丰富。有毒植物内生放线菌具有合成次生代谢产物的潜力,可以为生物农药及抗生素开发提供丰富的菌种资源。  相似文献   

18.
The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the effect of soil type was addressed. For this purpose, the bacterial and fungal communities associated with the rhizosphere of GM plants were compared by culture-independent methodologies to the near-isogenic parental line. Two different soils and three stages of plant development in two different periods of the year were included. As evidenced by principal components analysis (PCA) of the PCR-DGGE profiles of evaluated community, clear differences occurred in these rhizosphere communities between soils and the periods of the year that maize was cultivated. However, there were no discernible effects of the GM lines as compared to the parental line. For all microbial communities evaluated, soil type and the period of the year that the maize was cultivated were the main factors that influenced their structures. No differences were observed in the abundances of total bacteria between the rhizospheres of GM and parental plant lines.  相似文献   

19.
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.  相似文献   

20.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号