首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   

2.
This paper quantified carbon budget in the past 30 years (1981–2010) and identified the impact of land cover change on carbon dynamics using vegetation integrated simulator for trace gases (VISIT) model. North Korea was converted from carbon sink to source with 10.72 ± 5.18 Tg C yr?1 of net ecosystem production (NEP) in the 1980s, 3.00 ± 7.96 Tg C yr?1 in the 1990s, and ?0.46 ± 5.13 Tg C yr?1 in the 2000s. NEP in South Korea was 10.55 ± 1.09 Tg C yr?1 in the 1980s, 10.47 ± 7.28 Tg C yr?1 in the 1990s, and 6.32 ± 5.02 Tg C yr?1 in the 2000s, showing a gradual decline. In North Korea, NEP was decreased by 0.52 Tg yr?1 in the 1990s due to reduction of forest, and increased by 0.36 Tg yr?1 in the 2000s due to expansion of cropland. In South Korea, it was decreased by 0.24 Tg yr?1 in the 1990s as urban and built-up area expanded, and increased by 0.04 Tg yr?1 in the 2000s with the expansion of forest. These results suggest the importance of forest and land cover management against deforestation for ensuring national carbon balance.  相似文献   

3.
4.
Uncertainty was quantified for an inventory estimating change in soil organic carbon (SOC) storage resulting from modifications in land use and management across US agricultural lands between 1982 and 1997. This inventory was conducted using a modified version of a carbon (C) accounting method developed by the Intergovernmental Panel on Climate Change (IPCC). Probability density functions (PDFs) were derived for each input to the IPCC model, including reference SOC stocks, land use/management activity data, and management factors. Change in C storage was estimated using a Monte‐Carlo approach with 50 000 iterations, by randomly selecting values from the PDFs after accounting for dependencies in the model inputs. Over the inventory period, mineral soils had a net gain of 10.8 Tg C yr?1, with a 95% confidence interval ranging from 6.5 to 15.3 Tg C yr?1. Most of this gain was due to setting‐aside lands in the Conservation Reserve Program. In contrast, managed organic soils lost 9.4 Tg C yr?1, with a 95% confidence interval ranging from 6.4 to 13.3 Tg C yr?1. Combining these gains and losses in SOC, US agricultural soils accrued 1.3 Tg C yr?1 due to land use and management change, with a 95% confidence interval ranging from a loss of 4.4 Tg C yr?1 to a gain of 6.9 Tg C yr?1. Most of the uncertainty was attributed to management factors for tillage, land use change between cultivated and uncultivated conditions, and C loss rates from managed organic soils. Based on the uncertainty, we are not able to conclude with 95% confidence that change in US agricultural land use and management between 1982 and 1997 created a net C sink for atmospheric CO2.  相似文献   

5.
Changes in carbon storage and fluxes in a chronosequence of ponderosa pine   总被引:14,自引:1,他引:13  
Forest development following stand‐replacing disturbance influences a variety of ecosystem processes including carbon exchange with the atmosphere. On a series of ponderosa pine (Pinius ponderosa var. Laws.) stands ranging from 9 to> 300 years in central Oregon, USA, we used biological measurements to estimate carbon storage in vegetation and soil pools, net primary productivity (NPP) and net ecosystem productivity (NEP) to examine variation with stand age. Measurements were made on plots representing four age classes with three replications: initiation (I, 9–23 years), young (Y, 56–89 years), mature (M, 95–106 years), and old (O, 190–316 years) stands typical of the forest type in the region. Net ecosystem productivity was lowest in the I stands (?124 g C m?2 yr?1), moderate in Y stands (118 g C m?2 yr?1), highest in M stands (170 g C m?2 yr?1), and low in the O stands (35 g C m?2 yr?1). Net primary productivity followed similar trends, but did not decline as much in the O stands. The ratio of fine root to foliage carbon was highest in the I stands, which is likely necessary for establishment in the semiarid environment, where forests are subject to drought during the growing season (300–800 mm precipitation per year). Carbon storage in live mass was the highest in the O stands (mean 17.6 kg C m?2). Total ecosystem carbon storage and the fraction of ecosystem carbon in aboveground wood mass increased rapidly until 150–200 years, and did not decline in older stands. Forest inventory data on 950 ponderosa pine plots in Oregon show that the greatest proportion of plots exist in stands ~ 100 years old, indicating that a majority of stands are approaching maximum carbon storage and net carbon uptake. Our data suggests that NEP averages ~ 70 g C m?2 year?1 for ponderosa pine forests in Oregon. About 85% of the total carbon storage in biomass on the survey plots exists in stands greater than 100 years, which has implications for managing forests for carbon sequestration. To investigate variation in carbon storage and fluxes with disturbance, simulation with process models requires a dynamic parameterization for biomass allocation that depends on stand age, and should include a representation of competition between multiple plant functional types for space, water, and nutrients.  相似文献   

6.
Life cycle analysis of climate and disturbance effects on forest net ecosystem productivity (NEP) is necessary to assess changes in forest carbon (C) stocks under current or future climates. Ecosystem models used in such assessments need to undergo well-constrained tests of their hypotheses for climate and disturbance effects on the processes that determine CO2 exchange between forests and the atmosphere. We tested the ability of the model ecosys to simulate diurnal changes in CO2 fluxes under changing air temperatures (Ta) and soil water contents during forest regeneration with eddy covariance measurements over boreal jack pine (Pinus banksiana) stands along a postclearcut chronosequence. Model hypotheses for hydraulic and nutrient constraints on CO2 fixation allowed ecosys to simulate the recovery of C cycling during the transition of boreal jack pine stands from C sources following clearcutting (NEP from −150 to −200 g C m−2 yr−1) to C sinks at maturity (NEP from 20 to 80 g C m−2 yr−1) with large interannual variability. Over a 126-year logging cycle, annualized NEP, C harvest, and net biome productivity (NBP=NEP–harvest removals) of boreal jack pine averaged 47, 33 and 14 g C m−2 yr−1. Under an IPCC SRES climate change scenario, rising Ta exacerbated hydraulic constraints that adversely affected NEP of boreal jack pine after 75 years. These adverse effects were avoided in the model by replacing the boreal jack pine ecotype with one adapted to warmer Ta. This replacement raised annualized NEP, C harvest, and NBP to 81, 56 and 25 g C m−2 yr−1 during a 126-year logging cycle under the same climate change scenario.  相似文献   

7.
We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m?2 yr?1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m?2 yr?1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m?2 yr?1 or a small source of 7.6 g C m?2 yr?1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m?2 yr?1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ?8.3 ± 13 and ?13 ± 33 g C m?2 yr?1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m?2 yr?1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m?2 yr?1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m?2 yr?1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.  相似文献   

8.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   

9.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

10.
We model the carbon balance of European croplands between 1901 and 2000 in response to land use and management changes. The process‐based ORCHIDEE‐STICS model is applied here in a spatially explicit framework. We reconstructed land cover changes, together with an idealized history of agro‐technology. These management parameters include the treatment of straw and stubble residues, application of mineral fertilizers, improvement of cultivar species and tillage. The model is integrated for wheat and maize during the period 1901–2000 forced by climate each 1/2‐hour, and by atmospheric CO2, land cover change and agro‐technology each year. Several tests are performed to identify the most sensitive agro‐technological parameters that control the net biome productivity (NBP) in the 1990s, with NBP equaling for croplands the soil C balance. The current NBP is a small sink of 0.16 t C ha?1 yr?1. The value of NBP per unit area reflects past and current management, and to a minor extent the shrinking areas of arable land consecutive to abandonment during the 20th Century. The uncertainty associated with NBP is large, with a 1‐sigma error of 0.18 t C ha?1 yr?1 obtained from a qualitative, but comprehensive budget of various error terms. The NBP uncertainty is dominated by unknown historical agro‐technology changes (47%) and model structure (27%), with error in climate forcing playing a minor role. A major improvement to the framework would consist in using a larger number of representative crops. The uncertainty of historical land‐use change derived from three different reconstructions, has a surprisingly small effect on NBP (0.01 t C ha?1 yr?1) because cropland area remained stable during the past 20 years in all the tested land use forcing datasets. Regional cross‐validation of modeled NBP against soil C inventory measurements shows that our results are consistent with observations, within the uncertainties of both inventories and model. Our estimation of cropland NBP is however likely to be biased towards a sink, given that inventory data from different regions consistently indicate a small source whereas we model a small sink.  相似文献   

11.
The development of complete regional carbon (C) budgets for different biomes is an integral step in the effort to predict global response and potential feedbacks to a changing climate regime. Wetland and lake contributions to regional C cycling remain relatively uncertain despite recent research highlighting their importance. Using a combination of field surveys and tower‐based carbon dioxide (CO2) flux measurements, modeling, and published literature, we constructed a complete C budget for the Northern Highlands Lake District in northern Wisconsin/Michigan, a ~6400 km2 region rich in lakes and wetlands. This is one of the first regional C budgets to incorporate aquatic and terrestrial C cycling under the same framework. We divided the landscape into three major compartments (forests, wetlands, and surface waters) and quantified all major C fluxes into and out of those compartments, with a particular focus on atmospheric exchange but also including sedimentation in lakes and hydrologic fluxes. Landscape C storage was dominated by peat‐containing wetlands and lake sediments, which make up only 20% and 13% of the landscape area, respectively, but contain >80% of the total fixed C pool (ca. 400 Tg). We estimated a current regional C accumulation of 1.1±0.1 Tg yr?1, and the largest regional flux was forest net ecosystem exchange (NEE) into aggrading forests for a total of 1.0±0.1 Tg yr?1. Mean wetland NEE (0.12±0.06 Tg yr?1 into wetlands), lake CO2 emissions and riverine efflux (each ca. 0.03±0.01 Tg yr?1) were smaller but of consequence to the overall budget. Hydrologic transport from uplands/wetlands to surface waters within the region was an important vector of terrestrial C. Regional C fluxes and pools would be misrepresented without inclusion of surface waters and wetlands, and C budgets in heterogeneous landscapes open opportunities to examine the sensitivities of important fluxes to changes in climate and land use/land cover.  相似文献   

12.
Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr?1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr?1), river/stream evasion (158 ± 50 TgC yr?1), and fire emissions (142 ± 45 TgC yr?1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.  相似文献   

13.
Peatland ecosystems have been consistent carbon (C) sinks for millennia, but it has been predicted that exposure to warmer temperatures and drier conditions associated with climate change will shift the balance between ecosystem photosynthesis and respiration providing a positive feedback to atmospheric CO2 concentration. Our main objective was to determine the sensitivity of ecosystem photosynthesis, respiration and net ecosystem production (NEP) measured by eddy covariance, to variation in temperature and water table depth associated with interannual shifts in weather during 2004–2009. Our study was conducted in a moderately rich treed fen, the most abundant peatland type in western Canada, in a region (northern Alberta) where peatland ecosystems are a significant landscape component. During the study, the average growing season (May–October) water depth declined approximately 38 cm, and temperature [expressed as cumulative growing degree days (GDD, March–October)] varied approximately 370 GDD. Contrary to previous predictions, both ecosystem photosynthesis and respiration showed similar increases in response to warmer and drier conditions. The ecosystem remained a strong net sink for CO2 with an average NEP (± SD) of 189 ± 47 g C m?2 yr?1. The current net CO2 uptake rates were much higher than C accumulation in peat determined from analyses of the relationship between peat age and cumulative C stock. The balance between C addition to, and total loss from, the top 0–30 cm depth (peat age range 0–70 years) of shallow peat cores averaged 43 ± 12 g C m?2 yr?1. The apparent long‐term average rate of net C accumulation in basal peat samples was 19–24 g C m?2 yr?1. The difference between current rates of net C uptake and historical rates of peat accumulation is likely a result of vegetation succession and recent increases in tree establishment and productivity.  相似文献   

14.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

15.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

16.
Carbon fluxes were investigated in a mature deciduous forest, located in Northern Germany (53°47′N–10°36′E), by means of eddy‐covariance technique, stand survey and models. This forest has been managed following a concept of nature‐oriented forestry since the 1980s. One of the goals of the study was to test whether changed management led to increased carbon sequestration. The forest contains several broadleaved tree species. Depending on wind direction, the fetch‐area of the eddy‐covariance data was dominated by different tree species. Three subplots dominated by Oak, Beech or Alder/Ash could be distinguished from the tower data. In each of these subplots, 30 × 30 m2 areas were defined to analyse leaf area index, litterfall and the increase of the wood biomass. Eddy‐covariance analysis showed that the gross primary productivity (GPP′) was higher in the Oak subplot (?1794 g C m?2 yr?1) in comparison with the Beech plot and the Alder/Ash plot (?1470 and ?1595 g C m?2 yr?1, respectively). The total ecosystem respiration (TER) was the highest in the Alder/Ash‐dominated subplot (1401 g C m?2 yr?1) followed by the Oak plot and the Beech plot (1235 and 1174 g C m?2 yr?1, respectively). The resulting net ecosystem productivity (NEP) was ?559 g C m?2 yr?1 for the Oak‐dominated subplot, ?295 g C m?2 yr?1 for the Beech plot and ?193 g C m?2 yr?1 for the Alder/Ash plot. From Stand survey and modelling, the net primary productivity was estimated as 1103, 702 and 671 g C m?2 yr?1 in the Oak, Beech and Alder/Ash plot, respectively. Also carbon flux with litterfall was the highest in the Oak plot 343 g C m?2 yr?1 and lowest in Alder/Ash plot (197 g m?2 yr?1) with the Beech plot in between (228 g m?2 yr?1). The observations indicate an increase of the proportion of litterfall with increasing GPP′ and a different ability of carbon sequestration of the three stands in medium temporary scale. Only in the Oak stand that comprised the oldest trees and the most structured canopy the carbon sequestration was increased compared with conventionally managed forests.  相似文献   

17.
The interest in national terrestrial ecosystem carbon budgets has been increasing because the Kyoto Protocol has included some terrestrial carbon sinks in a legally binding framework for controlling greenhouse gases emissions. Accurate quantification of the terrestrial carbon sink must account the interannual variations associated with climate variability and change. This study used a process‐based biogeochemical model and a remote sensing‐based production efficiency model to estimate the variations in net primary production (NPP), soil heterotrophic respiration (HR), and net ecosystem production (NEP) caused by climate variability and atmospheric CO2 increases in China during the period 1981–2000. The results show that China's terrestrial NPP varied between 2.86 and 3.37 Gt C yr?1 with a growth rate of 0.32% year?1 and HR varied between 2.89 and 3.21 Gt C yr?1 with a growth rate of 0.40% year?1 in the period 1981–1998. Whereas the increases in HR were related mainly to warming, the increases in NPP were attributed to increases in precipitation and atmospheric CO2. Net ecosystem production (NEP) varied between ?0.32 and 0.25 Gt C yr?1 with a mean value of 0.07 Gt C yr?1, leading to carbon accumulation of 0.79 Gt in vegetation and 0.43 Gt in soils during the period. To the interannual variations in NEP changes in NPP contributed more than HR in arid northern China but less in moist southern China. NEP had no a statistically significant trend, but the mean annual NEP for the 1990s was lower than for the 1980s as the increases in NEP in southern China were offset by the decreases in northern China. These estimates indicate that China's terrestrial ecosystems were taking up carbon but the capacity was undermined by the ongoing climate change. The estimated NEP related to climate variation and atmospheric CO2 increases may account for from 40 to 80% to the total terrestrial carbon sink in China.  相似文献   

18.
Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP) and net biome production (NBP) as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003–2012 in Yucheng and during 2007–2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP) and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m−2 yr−1, respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat) was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands.  相似文献   

19.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   

20.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号