首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mastering ectomycorrhizal symbiosis: the impact of carbohydrates   总被引:1,自引:0,他引:1  
Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.  相似文献   

2.
3.
Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant.  相似文献   

4.
Ectomycorrhizas are formed between certain soil fungi and fine roots of woody plants. An important feature of this symbiosis is the supply of photoassimilates to the fungus. Hexoses, formed from sucrose in the common apoplast at the root/fungus interface, can be taken up by both plant and fungal monosaccharide transporters. Recently we characterised a monosaccharide transporter from the ectomycorrhizal fungus Amanita muscaria. This transporter was up-regulated in mycorrhizas, thus increasing the hexose uptake capacity of the fungal partner in symbiosis. In order to characterise host (Picea abies) root monosaccharide transporters, degenerate oligonucleotide primers, designed to match conserved regions from known plant hexose transporters, were used to isolate a cDNA fragment of a transporter by PCR. This fragment was used to identify a presumably full length clone (PaMST1) in a P. abies/A. muscaria mycorrhizal cDNA library. The entire cDNA code for an open reading frame of 513 amino acids, revealing best homology to H+/monosaccharide transporters from Ara- bidopsis, Saccharum and Ricinus. PaMST1 was highly expressed in the hypocotyl and in roots of P. abies seedlings, but not in needles. Mycorrhiza formation led to a slight reduction of PaMST1 expression. The results are discussed with special reference to carbon allocation in ectomycorrhizas. Received: 9 October 1999 / Accepted: 22 December 1999  相似文献   

5.
* The influence of carbohydrate availability to mycorrhizal roots on uptake, metabolism and translocation of phosphate (P) by the fungus was examined in axenic cultures of transformed carrot (Daucus carota) roots in symbiosis with Glomus intraradices. * 14C-labelled carbohydrates, 33P-phosphate and energy dispersive X-ray microanalysis were used to follow the uptake and transfer of C and P in the arbuscular mycorrhizal (AM) symbiosis. * The uptake of P by the extraradical mycelium (ERM) and its translocation to the mycorrhizal roots was stimulated and the metabolic and spatial distribution of P within the fungus were altered in response to increased carbohydrate availability. Sucrose supply resulted in a decrease of polyphosphates and an increased incorporation into phospholipids and other growth-related P pools and also caused elevated cytoplasmic P levels in the intraradical mycelium (IRM) within the root and higher cytoplasmic P levels in the root cortex. * These findings indicate that the uptake of P by the fungus and its transfer to the host is also stimulated by the transfer of carbon from plant to fungus across the mycorrhizal interface.  相似文献   

6.
Hampp  Rüdiger  Wiese  Joachim  Mikolajewski  Sabine  Nehls  Uwe 《Plant and Soil》1999,215(2):103-113
The symbiosis (ectomycorrhiza, ECM) between roots of trees and shrubs of boreal and temperate forest ecosystems and soil fungi is essential for water and nutrient acquisition of the plants. The functionality of ECM is largely dependent on the ability of the host plant to supply photoassimilates to the fungus via the symbiotic interface. Based on sterile in vitro and non-sterile pot experiments, we review data which gives evidence that hexoses are supplied to the fungus by the host plant (mainly glucose and fructose), and that these sugars, at least in part, control development and function of ECM by interfering with fungal gene expression. We further show that any factor which reduces hexose allocation to the host–fungus interface will adversely affect ECM development. As an example, we address the impact of increased supply of nitrogen on the biochemistry of plant–fungus interaction and discuss potential consequences on host performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Carbon is transferred from the plant to the fungus as hexose, but the main form of carbon stored by the mycobiont at all stages of its life cycle is triacylglycerol. Previous isotopic labeling experiments showed that the fungus exports this storage lipid from the intraradical mycelium (IRM) to the extraradical mycelium (ERM). Here, in vivo multiphoton microscopy was used to observe the movement of lipid bodies through the fungal colony and to determine their sizes, distribution, and velocities. The distribution of lipid bodies along fungal hyphae suggests that they are progressively consumed as they move toward growing tips. We report the isolation and measurements of expression of an AM fungal expressed sequence tag that encodes a putative acyl-coenzyme A dehydrogenase; its deduced amino acid sequence suggests that it may function in the anabolic flux of carbon from lipid to carbohydrate. Time-lapse image sequences show lipid bodies moving in both directions along hyphae and nuclear magnetic resonance analysis of labeling patterns after supplying 13C-labeled glycerol to either extraradical hyphae or colonized roots shows that there is indeed significant bidirectional translocation between IRM and ERM. We conclude that large amounts of lipid are translocated within the AM fungal colony and that, whereas net movement is from the IRM to the ERM, there is also substantial recirculation throughout the fungus.  相似文献   

8.
Abstract: Fungal carbohydrate nutrition is an important aspect of ectomycorrhizal symbiosis. At the plant/fungus interface, fungal and root cortical cells compete for monosaccharides, generated from plant-derived sucrose. Therefore, the kinetic properties of the monosaccharide uptake systems are decisive for the monosaccharide yield of each partner. For the functional characterization of a hexose transporter (AmMst1) of the ectomycorrhizal fungus Amanita muscaria, the entire cDNA was expressed in a Saccharomyces cerevisiae strain unable to take up hexoses. Uptake experiments with 14C-labelled monosaccharides resulted in KM values of 0.46 mM for glucose and 4.20 mM for fructose, revealing a strong preference of AmMst1 for glucose as substrate. Glucose uptake by AmMst1 was strongly favoured even in the presence of a large excess of fructose. Comparable affinities of AmMst1 for glucose, 3-O-methyl glucose and mannose were obtained. In contrast, AmMst1 imported galactose with a much lower efficiency, revealing that this transporter distinguishes pyranoses by steric hindrance at the C-4 position. While yeast contains numerous hexose transporter genes, the AmMst1 gene seems to be the main, if not the only, hexose transporter that is expressed in A. muscaria, as concluded from the comparison of hexose import properties of A. muscaria protoplasts and AmMst1 expressed in yeast.  相似文献   

9.
Arbuscular mycorrhizal (AM) fungi take up photosynthetically fixed carbon from plant roots and translocate it to their external mycelium. Previous experiments have shown that fungal lipid synthesized from carbohydrate in the root is one form of exported carbon. In this study, an analysis of the labeling in storage and structural carbohydrates after (13)C(1) glucose was provided to AM roots shows that this is not the only pathway for the flow of carbon from the intraradical to the extraradical mycelium (ERM). Labeling patterns in glycogen, chitin, and trehalose during the development of the symbiosis are consistent with a significant flux of exported glycogen. The identification, among expressed genes, of putative sequences for glycogen synthase, glycogen branching enzyme, chitin synthase, and for the first enzyme in chitin synthesis (glutamine fructose-6-phosphate aminotransferase) is reported. The results of quantifying glycogen synthase gene expression within mycorrhizal roots, germinating spores, and ERM are consistent with labeling observations using (13)C-labeled acetate and glycerol, both of which indicate that glycogen is synthesized by the fungus in germinating spores and during symbiosis. Implications of the labeling analyses and gene sequences for the regulation of carbohydrate metabolism are discussed, and a 4-fold role for glycogen in the AM symbiosis is proposed: sequestration of hexose taken from the host, long-term storage in spores, translocation from intraradical mycelium to ERM, and buffering of intracellular hexose levels throughout the life cycle.  相似文献   

10.
外生菌根菌与森林树木的相互关系   总被引:23,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

11.
12.
The role of flowering in root‐fungal symbiosis is not well understood. Because flowering and fungal symbionts are supported by carbohydrates, we hypothesized that flowering modulates root‐beneficial fungal associations through alterations in carbohydrate metabolism and transport. We monitored fungal colonization and soluble sugars in the roots of Arabidopsis thaliana following inoculation with a mutualistic fungus Phomopsis liquidambari across different plant developmental stages. Jasmonate signalling of wild‐type plants, sugar transport, and root invertase of wild‐type and jasmonate‐insensitive plants were exploited to assess whether and how jasmonate‐dependent sugar dynamics are involved in flowering‐mediated fungal colonization alterations. We found that flowering restricts root‐fungal colonization and activates root jasmonate signalling upon fungal inoculation. Jasmonates reduce the constitutive and fungus‐induced accumulation of root glucose and fructose at the flowering stage. Further experiments with sugar transport and metabolism mutant lines revealed that root glucose and fructose positively influence fungal colonization. Diurnal, jasmonate‐dependent inhibitions of sugar transport and soluble invertase activity were identified as likely mechanisms for flowering‐mediated root sugar depletion upon fungal inoculation. Collectively, our results reveal that flowering drives root‐fungus cooperation loss, which is related to jasmonate‐dependent root soluble sugar depletion. Limiting the spread of root‐fungal colonization may direct more resources to flower development.  相似文献   

13.
14.
We investigated the growth and nutrient uptake of the Lycopersicon esculentum symbiosis mycorrhiza-defective plant mutant rmc, challenged with arbuscular mycorrhiza (AM) fungal propagules, in the presence or absence of roots of the commercial wild-type tomato cv. Golden Queen (GQ). Two plants shared the middle (combi) compartment of a horizontal three-compartment split-root pot with one part of their root system; the other part was grown separately in an outer (solo) pot. Combinations of rmc and GQ plants were grown together in soil that was either mycorrhiza-free (-M) or prepared with AM fungal inoculum (+M). Surface colonization of rmc roots was strongly increased in the presence of (+M) GQ roots. AM fungal inoculation increased phosphorus uptake of GQ plants, but decreased growth and P uptake of rmc plants. Growth and P uptake of (+M) GQ plants were reduced when plants were grown in combination with rmc rather than another GQ plant. AM fungi in the (combi) compartment may have preferentially formed hyphae spreading infection rather than functioning in P uptake in (+M) GQ plants grown in combination with rmc. Surface colonization of (+M) rmc roots, in the presence of GQ roots, was probably established at the expense of carbohydrates from associated GQ plants. Possible reasons for a decreased P uptake of rmc plants in response to AM fungal inoculation are proposed.  相似文献   

15.
In most studies about dioecious plants, the role of arbuscular mycorrhizae (AM) and the potential sex-specific differences between the plant hosts have been overlooked. Because plant sexes frequently differ in drought tolerance and AM fungal colonization provides higher resistance to drought, we investigated whether the relation of mycorrhizal fungi with either male or female Antennaria dioica plants differs using a factorial experiment. We hypothesized that because AM usually increase growth rate and male plants usually grow larger than females, males should gain more benefit from the mycorrhizal symbiosis in terms of mineral nutrition and water supply. Because of higher demands of carbohydrates (C) in males, we expected males to allocate less C resources to the mycorrhizal fungus so that the associated fungi should benefit less of the association with males. In contrast to our initial hypothesis, the male plants, although faster growing under drought, did not gain more symbiosis-mediated benefits than did the females, and both sexes seemed to provide resources equally to their fungal symbiont. Therefore, we conclude that the two plant sexual morphs provide equal amounts of C to their fungal root symbionts and that they can gain specific benefits from the symbiosis, which, however, depend on soil water availability.  相似文献   

16.
17.
The ancient arbuscular mycorrhiza represents a mutualistic symbiotic interaction of plants with soil‐born fungi. The fungus assists the plant in requiring mineral nutrients and water, whereas the plant supplies the biotrophic fungus with carbohydrates. This interaction is widespread and enables the plant to cope with unfavourable conditions (e.g. limited nutrient supply as well as drought, salt and heavy metal stress or pathogen attack). This review describes the state of the art concerning the establishment and regulation of the plant‐fungus interaction. Early signals leading to a successful colonization and the following mechanisms of the plant to host the fungus are explained. Another focus is given on the regulation of the transfer of carbohydrates to the fungus, the restriction of fungal growth by autoregulative mechanisms and the function of phytohormones, all part of a plant regulatory machinery that is necessary to ensure a functional and balanced symbiosis.  相似文献   

18.
A simple and convenient culture system has been developed for the analysis of ectomycorrhiza formation under controlled conditions. Rapid and synchronous mycorrhiza synthesis was observed when thin and even layers of Pisolithus tinctorius (Pers.) hyphae were brought at once into contact with the entire root system of 3-month-old Picea abies (L. Karst) plants. Suitable fungal layers were grown on cardboard with limiting glucose supply in the medium to maximize radial growth. The glucose was almost consumed by the time the fungus had spread over the whole cardboard and was ready for inoculation of the roots. At this stage, the fungus contained trehalose and arabitol as the main soluble carbohydrates. A few hours after the assembly of the culture system, contacts between roots and aerial hyphae were observed and a sheath was formed 3 days later, suggesting very rapid ectomycorrhiza formation under these conditions. The pool of soluble carbohydrates of the inoculum, i.e. the extramatrical mycelium, declined after inoculation of the roots and was almost zero after 2 weeks. The supply of carbon by the plant was then sufficient for the fungus to expand the soluble pool efficiently in both the mycorrhizas and the extramatrical mycelium. The kinetics of the carbohydrate pool and the observed differentiation of the short roots to mycorrhizas imply that in our culture system fully functional symbiosis was established no later than 14 days after the plants were inoculated with the fungus.  相似文献   

19.
Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down‐regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild‐type rootstocks and scions indicated that mainly the root‐specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2‐interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.  相似文献   

20.
Sarcodes sanguinea is a nonphotosynthetic mycoheterotrophic plant that obtains all of its fixed carbon from neighboring trees through a shared ectomycorrhizal fungus. We studied the spatial structuring of this tripartite symbiosis in a forest where Sarcodes is abundant, and its only fungal and photosynthetic plant associates are Rhizopogon ellenae and Abies magnifica, respectively. We found disproportionately high concentrations of Abies roots adjacent to Sarcodes roots compared to the surrounding soil. Rhizopogon ellenae colonizes the vast majority of those Abies roots (86-98%), and its abundance tends to decrease with increasing distance from Sarcodes plants. At 500 cm from Sarcodes plants we did not detect R. ellenae, and the ectomycorrhizal community instead was dominated by members of the Russulaceae and Thelephoraceae, which are commonly dominant in other California pinaceous forests. The highly clumped distribution of Abies-R. ellenae ectomycorrhizas indicates that Sarcodes plants either establish within pre-existing clumps, or they stimulate clump formation. Several lines of evidence favor the latter interpretation, suggesting an unexpected mutualistic aspect to the symbiosis. However, the mechanism involved remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号