首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to determine how the results from lipid, moisture, and differential scanning calorimetry analyses conducted on silver maple (Aceraceae: Acer saccharinum L.) and red buckeye (Hippocastanaceae: Aesculus pavia L.) compared with those obtained from previous studies on white and water oaks (Fagaceae: Quercus alba and Q. nigra), and the tropical zone species American muskwood (Meliaceae: Guarea guidonia) and carapa (Meliaceae: Carapa guianensis). Seeds were air-dried at room temperature for 9-11 days. At intervals, germination was tested, moisture determined, and lipids extracted. It was found that, like the other recalcitrant seeds, (1) viability was greatly reduced or lost after 11 days of drying, (2) percentage changes in individual fatty acids were not related to seed viability, and (3) results from the differential scanning calorimetry studies revealed a strong relationship between enthalpy/onset data from the embryo and cotyledon tissues and loss of viability. Also, silver maple seeds experienced a 50% reduction in viability by day 5 of drying and retained an axis moisture content over 25% throughout the experiment. However, unlike the other recalcitrant seeds surveyed, both silver maple and red buckeye had a significant reduction in the total amount (mg/g) of cotyledon lipids as the experiment progressed. However, no decrease in the unsaturated/saturated fatty acid ratio was found, so we conclude that in these species lipid peroxidation is not a marker of declining seed viability. Also, red buckeye seeds did not lose 50% viability until after day 8 of the experiment, and axis moisture content fell well below 20% as the seeds dried.  相似文献   

2.
Diets supplemented with relatively high levels of either saturated fatty acids derived from sheep kidney fat (sheep kidney fat diet) or unsaturated fatty acids derived from sunflower seed oil (sunflower seed oil diet) were fed to rats for a period of 16 weeks and changes in the thermotropic behaviour of liver and heart mitochondrial lipids were determined by differential scanning calorimetry (DSC). The diets induced similar changes in the fatty acid composition in both liver and heart mitochondrial lipids, the major change being the omega 6 to omega 3 unsaturated fatty acid ratio, which was elevated in mitochondria from animals on the sunflower seed oil diet and lowered with the mitochondria from the sheep kidney fat dietary animals. When examined by DSC, aqueous buffer dispersions of liver and heart mitochondrial lipids exhibited two independent, reversible phase transitions and in some instances a third highly unstable transition. The dietary lipid treatments had their major effect of the temperature at which the lower phase transition occurred, there being an inverse relationship between the transition temperature and the omega 6 to omega 3 unsaturated fatty acid ratio. No significant effect was observed for the temperature of the higher phase transition. These results indicate that certain domains of mitochondrial lipids, probably containing some relatively higher melting-point lipids, independently undergo formation of the solidus or gel phase and this phenomenon is not greatly influenced by the lipid composition of the mitochondrial membranes. Conversely, other domains, representing the bulk of the membrane lipids and which probably contain the relatively lower melting point lipids, undergo solidus phase formation at temperatures which reflect changes in the membrane lipid composition which are in turn, a reflection of the nature of the dietary lipid intake. These lipid phase transitions do not appear to correlate directly with those events considered responsible for the altered Arrhenius kinetics of various mitochondrial membrane-associated enzymes.  相似文献   

3.
Walters C  Landré P  Hill L  Corbineau F  Bailly C 《Planta》2005,222(3):397-407
Imbibing sunflower (Helianthus annuus L., cv. Briosol) seeds at water potentials between –2 MPa and –5 MPa leads to faster (priming) or slower (accelerated ageing) germination depending on the temperature and duration of treatment. Mobilization of food reserves may be associated with the changes in seed vigor. To study this, morphological, biochemical and phase properties of lipid, the major food reserve in sunflower, were compared in freshly harvested (i.e., control), primed and aged sunflower cotyledons using electron microscopy, biochemical analyses and differential scanning calorimetry, respectively. Lipid bodies became smaller and more dispersed throughout the cytoplasm during priming and ageing. Despite ultrastructural changes, there were few measured changes in biochemistry of the neutral lipid component; lipid content, proportion of saturated and unsaturated fatty acids and level of free fatty acids were unchanged in primed and slightly aged seeds, with only severely aged seeds showing a net decrease in polyunsaturated fatty acids and an increase in free fatty acids. Subtle changes in the calorimetric behavior of lipids within sunflower cotyledons were observed. Sunflower lipids exhibited polymorphic crystalline and amorphous solid phases when cooled to <–100°C, but priming decreased the rate of crystallization in vivo and ageing increased the rate of crystallization, but decreased percentage crystallinity. The observed changes in thermal behavior in vivo are consistent with losses and gains, respectively, of interacting non-lipid moieties in the triacylglycerol matrix.  相似文献   

4.
Crane J  Miller AL  van Roekel JW  Walters C 《Planta》2003,217(5):699-708
Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.  相似文献   

5.
Summary Cuticle discs cut from the wings ofPeriplaneta and cuticular lipid extracts were analysed by differential scanning calorimetry. Two major endothermic events, one beginning at 7.1±0.3°C, and the other increasing with temperature above 24.7±0.7°C, were associated with extractable lipids in intact cuticle discs. Heating progressively destroyed the molecular structures responsible for the high temperature event but had no effect on the lower one. These results complement changes in cuticle permeability observed in a recent study and thought to be associated with structural change in the cuticular water barrier. The molecular structures responsible for both events depended on the presence of water in the cuticle. Cuticular lipid extracts lack the molecular organization found in intact cuticle, even when water is present.  相似文献   

6.
郑昀晔  牛永志  索文龙  逄涛 《广西植物》2019,39(11):1512-1518
该研究采用脂类组学方法,系统地研究了烟草种子成熟过程中膜脂含量及组成比例的变化规律。结果表明:(1)构成叶绿体和类囊体膜的重要脂类质体膜脂的含量及其在总膜脂中的组成比例,在种子成熟的整个过程中保持下降趋势;而构成细胞膜的重要脂类质外体膜脂含量在种子成熟前期则下降显著,在授粉21 d后基本保持不变。(2)总膜脂含量的变化规律与质体膜脂类似,但在授粉后第29天后含量却达到稳定状态。(3)因油脂在种子成熟过程中不断积累,且化学结构与膜脂相似,质体膜脂含量的降低可能与种子成熟过程中种子对油脂累积的持续需求以及对叶绿体及类囊体的需求降低有关。(4)质外体膜脂含量在授粉21 d后基本保持不变的原因,可能是由于脂质外体膜脂是细胞膜组成的主要膜脂,细胞膜在种子成熟以及成熟种子萌发过程中均发挥重要作用,因此质外体膜脂只在种子成熟的前期有部分转化为油脂。  相似文献   

7.
We have devised a method of temperature scanning with a vibrating-U-tube density meter in which temperature fluctuations are much reduced compared to those using a constant or programmable thermostat. The standard error of a density measurement is 5 × 10?7 g/ml. Volume changes associated with conformational changes of macromolecular systems can be precisely measured. Using this instrument the volume expansion-melting curves of lipid dispersions have been obtained. The curves are similar in shape and resolution to the excess heat-capacity curves derived from differential scanning calorimetry performed on the same sample. Temperature scanning allows measurements of expansivity as well as apparent volume throughout a temperature range of interest.  相似文献   

8.
Stratum corneum lipids are relatively complex, and there is little detailed understanding of their chemical and physical properties at the molecular level. Large unilamellar vesicles (LUVs) with lipid compositions similar to those of stratum corneum were prepared at pH 9 with commercially available lipids. This system was used as a model system for molecular studies of stratum corneum lipids. LUVs were chosen as the model system as they are comparatively more stable and can be characterized more quantitatively in terms of lipid concentration, surface area, and volume than model systems such as lipid mixture suspensions, lipid films, and small unilamellar vesicles. Results from freeze-fracture and cryo electron microscopy studies of our LUVs showed spherical vesicles. Quasi-elastic light scattering measurements revealed a narrow size distribution, centering around 119 nm. At room temperature, the LUVs were stable for several weeks at pH 9 and for more than 15 h but less than 24 h at pH 6. Differential scanning calorimetry measurements indicated broad endothermic transitions centered near 60-65 degrees C, closely matching the transition temperature reported for stratum corneum lipid extracts. Spin probes, 5-doxylstearic acid and 12-doxylstearic acid, were used for electron paramagnetic resonance (EPR) studies of the molecular dynamics of the lipids. EPR results indicated more restricted motion near the polar headgroup region than near the center of the alkyl chain region. Motional profiles of the spin labels near the polar headgroup and within the alkyl chain region in the LUVs were obtained as a function of temperature, ranging from 25 to 90 degrees C. We also found that the partitioning between the lipid and aqueous phases for each spin probe was temperature dependent and was generally correlated with phase transitions observed by differential scanning calorimetry and with alkyl chain mobility observed by EPR. Thus, this LUV system is well suited for additional molecular studies under different experimental conditions.  相似文献   

9.
10.
In the presence of either egg or bovine brain sphingomyelin, the spectral properties of glucagon undergo changes which are similar to those which occur in the presence of synthetic phosphatidylcholines. The fluorescence emission spectra are blue shifted about 10 nm in the presence of lipid and the peptide acquires an increased helical content, determined by circular dichroism. As with phosphatidylcholines, the changes in spectral properties do not occur above the phase transition temperature of the glucagon-lipid mixture. Freeze-fracture electron microscopy indicates that glucagon forms an ellipsoidal complex with bovine brain sphingomyelin, similar to the glucagon-dimyristoylphosphatidylcholine complex. However, the sphingomyelin complexes break down to vesicular structures both above and below the region of the phase transition. These results indicate that the dissociation of glucagon from the lipid at higher temperatures results from changes in the phase of the lipid rather than from a thermal denaturation of glucagon. The effect of glucagon on the phase transition behaviour of palmitoyl sphingosine phosphorylcholine was measured by differential scanning calorimetry. The major effect of glucagon on both this lipid and on dimyristoylphosphatidylcholine is to broaden the phase transition and to shift it to higher temperatures. Similar results are obtained for the effects of glucagon on an equimolar mixture of dimyristoylphosphatidylcholine and palmitoyl sphingosine phosphorylcholine. Glucagon is able to solubilize mixtures of bovine brain sphingomyelin with either dimyristoylphosphatidylcholine or egg lecithin. The lipid composition of the solubilized material is similar to that of the starting lipid film. These results together with those from the differential scanning calorimetry on the synthetic mixtures indicate that glucagon can bind to sphingomyelin-phosphatidylcholine mixtures and that it does not induce extensive lateral phase separation between the components. The maximal stability of the glucagon-lipid complex at the phase transition of the lipids indicates that the glucagon-lipid interaction is highly dependent on the structural organization of the lipid.  相似文献   

11.
对植物种子萌发过程中贮藏油脂动员的研究进展进行了综述。不同种子的贮藏油脂的降解途径不同。目前提出有3条途径:传统的脂酶直接水解途径;新近发现的酰基-CoA-二酯酰甘油酰基转移酶途径和脂氧合酶(LOX)途径。前两条途径不依赖于LOX。这3条途径可能在贮藏油脂动员过程中是并存的,但目前尚不知道在种子萌发过程中油脂降解是以那一条降解途径为主,以及不同的种之间是否存在差异。此外,3条降解途径目前都缺乏分子生物学的直接证据。  相似文献   

12.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

13.
The desiccation sensitivity in relation to the stage of development was investigated in embryonic axes from the homoiohydrous (recalcitrant) seeds of Landolphia kirkii. Electrolyte leakage, used to assess membrane damage after flash (very rapid) drying, indicated that axes from immature (non-germinable) seeds were the most desiccation-tolerant, followed by those from mature seeds, while axes from seeds germinated for increasing times were progressively more desiccation-sensitive. Differential scanning calorimetry was used to study the relationship between desiccation sensitivity and the properties of water in the tissues. Axes from immature seeds had a lower content of non-freezable water than that of any other developmental stage and a higher enthalpy of melting of freezable water. For mature and immature axes electrolyte leakage increased at the point of loss of freezable water. At other developmental stages the water content at which electrolyte leakage increased markedly correlated with the other properties of the water, such as the change in the shape of the melting endotherm and the onset temperature. Ultrastructural studies of axes at the various developmental stages showed changes in the degree and pattern of vacuolation, the presence and quantities of lipid and starch, and the degree of endomembrane development. The results are discussed in relation to current hypotheses on the basis of desiccation tolerance.Abbreviation DSC differential scanning calorimetry  相似文献   

14.
The accumulation of reactive oxygen species has been associated with a loss of seed viability. Therefore, we have investigated the germination ability of a range of seed stocks, including two wheat collections and one barley collection that had been dry-aged for 5–40 years. Metabolite profiling analysis revealed that the accumulation of glycerol was negatively correlated with the ability to germinate in all seed sets. Furthermore, lipid degradation products such as glycerol phosphates and galactose were accumulated in some seed sets. A quantitative analysis of nonoxidized and oxidized lipids was performed in the wheat seed set that showed the greatest variation in germination. This analysis revealed that the levels of fully acylated and nonoxidized storage lipids like triacylglycerols and structural lipids like phospho- and galactolipids were decreasing. Moreover, the abundance of oxidized variants and hydrolysed products such as mono-/diacylglycerols, lysophospholipids, and fatty acids accumulated as viability decreased. The proportional formation of oxidized and nonoxidized fatty acids provides evidence for an enzymatic hydrolysis of specifically oxidized lipids in dry seeds. The results link reactive oxygen species with lipid oxidation, structural damage, and death in long-term aged seeds.  相似文献   

15.
Biochemical events involved in the acquisition of germinability and storability during orthodox seed development are well documented; however, the roles played by the physical organization of lipids and water are poorly characterized. The aim of this work was to determine, using a thermodynamic approach, whether changes in thermal properties of lipid reserves, and intracellular glasses might play a role in sunflower (Helianthus annuus L.) seed development. Triacyglycerols (TAGs) accumulated in cotyledons until the end of seed filling, which occurred 42 days after anthesis (DAA). Further seed development, leading to mature seed at 58 DAA, was mainly associated with an enlargement of lipid bodies without significant changes either in the lipid content or in their composition. When cooled to -100 degrees C, lipid reserves from cotyledons of mature seeds displayed alpha and beta' polymorphic crystalline structures; however, the ability to form alpha crystals, which was an indicator of lipid purity, progressively appeared during seed development. Characteristics of lipid melting confirmed that seed maturation drying was associated with changes in TAG physical organization. Cotyledon development was associated with an increase in the temperature of glass to rubber transition (Tg), thus suggesting a decrease in molecular mobility during maturation drying. This phenomenon was concomitant with an increase in raffinose content. Our results demonstrate that physical characteristics of lipid reserves and glasses of sunflower cotyledons are developmentally regulated and might play a role in acquisition of seed germinability and storability.  相似文献   

16.
Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ΔGm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ΔGm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2 stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs.  相似文献   

17.
吸胀冷害是干种子在吸胀阶段遭受低温造成不萌发的现象,结果可能造成农作物损失严重。虽然吸胀过程中细胞膜的修复是关键事件,而且细胞膜在响应水分和温度胁迫中扮演重要角色,但是种子吸胀过程中膜变化的过程,特别是膜流动性变化过程研究较少。本文比较了吸胀冷害耐受型(LX)和敏感型(R5)两个大豆品种在吸胀冷害过程中膜脂不饱和度(double bond index, DBI)的变化,结果发现,LX和R5在常温(25℃)吸胀时变化趋势一致,质体膜脂DBI升高,质体外膜脂中磷脂酰甘油(phosphatidylglycerol, PG)分子DBI下降。LX和R5在低温(4℃)吸胀时DBI变化有很大差异,低温吸胀仅仅延缓了耐受型LX中质体膜脂DBI的升高,但是敏感性R5质体膜脂DBI不仅没有升高反而下降。用浓度33%的聚乙二醇 (polyethylene glycol, PEG)引发没有直接引起DBI变化,但是所引起的细微而显著的变化可能为萌发做好准备。PEG引发处理后的R5在吸胀冷害后第二和第三阶段质体膜脂DBI迅速增加,这个增加模式与LX的DBI增加相似。结果表明,吸胀冷害延缓或者阻滞了质体膜脂不饱和度的升高,大豆种子的吸胀冷害抗性与质体膜脂不饱和度正相关,提高质体膜质DBI可以提高吸胀冷害抗性。  相似文献   

18.
Priestley, D. A., Werner, B. G. and Leopold, A. C. 1985. Thesusceptibility of soybean seed lipids to artificially-enhancedatmospheric oxidation.—J. exp. Bot. 36: 1653–1659. As a model system for studying possible oxidation changes insoybeans with ageing, whole soybean seeds, ground soybeans orsoybean oil were exposed to a heated oxygen atmosphere (105°C)for periods of up to 6 d. With the exception of polar lipidsof the embryonic axis, seed lipids were highly resistant tooxidative degradation provided seed structure was maintainedintact; however, the non-lipid fraction of the seed rapidlybecame discoloured. Polar lipids of ground seed material, andboth total and polar lipids in isolated oil, were less stableto oxidation than similar lipids within whole seeds. These resultsindicate that seed organization protects the lipid componentsfrom atmospheric autoxidation. Key words: Soybean, seed lipids, oxidation  相似文献   

19.
The lipid phase transition of Escherichia coli was studied by high sensitivity differential scanning calorimetry. A temperature sensitive unsaturated fatty acid auxotroph was used to obtain lipids with subnormal unsaturated fatty acid contents. From these studies it was concluded that E. coli can grow nromally with as much as 20% of its membrane lipids in the ordered state but that if more than 55% of the lipids are ordered, growth ceases. Studies with wild-type cells show that the phase transition ends more than 10 degrees C below the growth temperature when the growth temperature is either 25 degrees C or 37 degrees C.  相似文献   

20.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号