首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4(S28N), was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4(S28N) mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4(S28N) gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner.  相似文献   

2.
Bovine adrenal chromaffin granule cytochrome (cyt) b561 is a transmembrane hemoprotein that plays a key role in transporting reducing equivalents from ascorbate to dopamine-beta-hydroxylase for catecholamine synthesis. We have developed procedures for expression and purification of functional bovine adrenal cyt b561 in insect and yeast cell systems. The bovine cyt b561 coding sequence, with or without a hexahistidine-tag sequence at the C-terminus, was cloned into the pVL1392 transfer vector under the control of the polyhedrin promoter to generate recombinant baculovirus for protein expression in Sf9 insect cells (approximately 0.5 mg detergent-solubilized cyt b561/L culture). For the yeast system, the cyt b561 cDNA was modified with a hexahistidine-tag sequence at the C-terminus, and inserted into the pPICZB vector under the control of the alcohol oxidase promoter. The recombinant plasmid was transformed into Pichia pastoris GS115 competent cells to give methanol-inducible cyt b561 expression (approximately 0.7 mg detergent-solubilized cyt b561/L culture). Recombinant His-tagged cyt b561 expressed in Sf9 or Pichia cells was readily solubilized from membrane fractions with dodecyl maltoside and purified to electrophoretic homogeneity by one-step chromatography on Ni-NTA affinity resin. The purified recombinant cytochrome from both systems had a heme to protein ratio close to two and was fully functional, as judged by comparison with the spectroscopic and kinetic parameters of the endogenous cytochrome from chromaffin granules. A novel procedure for isolation of chromaffin granule membranes was developed to utilize frozen adrenal glands instead of fresh tissue.  相似文献   

3.
4.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   

5.
6.
A glycosylation-deficient, full-length cation-dependent mannose 6-phosphate receptor (CD-MPR) containing a yeast signal sequence was expressed in Pichia pastoris using the constitutive promoter of the PGAP gene. The membrane-bound receptor was solubilized using detergents and purified by pentamannosyl phosphate-agarose affinity chromatography. Equilibrium binding studies identified a binding affinity of 2 nM for the lysosomal enzyme, beta-glucuronidase. To probe the linkage specificity of the recombinant CD-MPR, inhibition binding studies were conducted using non-phosphorylated oligomannoses which demonstrated that Manalpha1,2Man exhibits a 4-fold higher inhibition than Manalpha1,3Man and Manalpha1,6Man. The receptor was capable of associating into oligomeric forms and enzymatic deglycosylation revealed the presence of high-mannose sugars at the single potential N-glycosylation site. Mass spectrometric analysis revealed that the receptor was palmitoylated at the two potential cysteines in its cytoplasmic domain. In conclusion, the full-length CD-MPR produced in P. pastoris is structurally and functionally suitable for crystallization studies.  相似文献   

7.
The EPR spectral parameters of aa(3) oxidase and cyt c(552) from Paracoccus denitrificans were studied in purified oxidase and enriched cyt c(552). The orientation of the g-tensors of hemes a and c(552) were determined on partially ordered membranes, enriched cyt c(552) and a c(552):aa(3) subcomplex. The known correlation of g-tensor to molecular axes in histidine/methionine ligated hemes permits us to position cyt c(552) with respect to the parent membrane. Taken together with previous data on the interaction surface between aa(3) oxidase and cyt c(552), these results allow us to arrive at a single conformation for the c(552):aa(3) electron transfer complex.  相似文献   

8.
9.
The extracellular lipase gene from Yarrowia lipolytica (YlLip2) was cloned into the pPICZalphaA and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The lipase was successfully expressed and secreted with an apparent molecular weight of 39kDa using Saccharomyces cerevisiae secretion signal peptide (alpha-factor) under the control of the methanol inducible promoter of the alcohol oxidase 1 gene (AOX1). The lipase activity of 12,500,000U/l (2.10g total protein and 0.63g lipase per liter) was obtained in a fed-batch cultivation, where methanol feeding was linked to the dissolved oxygen content after initial glycerol culture. After fermentation, the supernatant was concentrated by ultrafiltration with a 10kDa cut off membrane and purified with ion exchange chromatography using Q Sepharose FF. Deglycosylation showed that the recombinant lipase is a glycoprotein which contains the same content of sugar (about 12%) as the native lipase from Y. lipolytica. The optimum temperature and pH of the recombinant lipase was 40 degrees C and 8.0, respectively. The lipase showed high activity toward long-chain fatty acid methyl esters (C12-C16).  相似文献   

10.
The observation that Plasmodium falciparum possesses cyanide insensitive respiration that can be inhibited by salicylhydroxamic acid (SHAM) and propyl gallate is consistent with the presence of an alternative oxidase (AOX). However, the completion and annotation of the P. falciparum genome project did not identify any protein with convincing similarity to the previously described AOXs from plants, fungi or protozoa. We undertook a survey of the available apicomplexan genome projects in an attempt to address this anomaly. Putative AOX sequences were identified and sequenced from both type 1 and 2 strains of Cryptosporidium parvum. The gene encodes a polypeptide of 336 amino acids and has a predicted N-terminal transit sequence similar to that found in proteins targeted to the mitochondria of other species. The potential of AOX as a target for new anti-microbial agents for C. parvum is evident by the ability of SHAM and 8-hydroxyquinoline to inhibit in vitro growth of C. parvum. In spite of the lack of a good candidate for AOX in either the P. falciparum or Toxoplasma gondii genome projects, SHAM and 8-hydroxyquinoline were found to inhibit the growth of these parasites. Phylogenetic analysis suggests that AOX and the related protein immutans are derived from gene transfers from the mitochondrial endosymbiont and the chloroplast endosymbiont, respectively. These data are consistent with the functional localisation studies conducted thus far, which demonstrate mitochondrial localisation for some AOX and chloroplastidic localization for immutans. The presence of a mitochondrial compartment is further supported by the prediction of a mitochondrial targeting sequence at the N-terminus of the protein and MitoTracker staining of a subcellular compartment in trophozoite and meront stages. These results give insight into the evolution of AOX and demonstrate the potential of targeting the alternative pathway of respiration in apicomplexans.  相似文献   

11.
Unlike matrix-targeted or inner membrane proteins, those that are targeted to the mitochondrial intermembrane space (IMS) do not require ATP or the inner membrane electrochemical potential. Their import is mediated primarily by the essential IMS protein Mia40/Tim40. Here, we show that the mitochondrial flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidase Erv1 (essential for respiration and vegetative growth 1) plays a central role in the biogenesis of small, cysteine proteins of the IMS that are import substrates for Mia40. In a temperature-sensitive strain of Erv1, steady-state levels of small translocases of the inner membrane (Tims) are specifically affected when cells are grown at the non-permissive temperature. Furthermore, mitochondria isolated from the erv1-ts show a specific import and assembly defect for the small Tims but not in any other protein import pathway. Erv1 does not directly oxidise the small Tims, as thiol trapping assays show that the small Tims can still be oxidised in erv1-ts cells grown at the non-permissive temperature and in isolated mitochondria from this strain. Moreover, addition of pure Erv1 into erv1-ts mitochondria lacking the endogenous protein restores import and assembly of the small Tims only to an extent, arguing for a cascade of interactions with Erv1 rather than for a direct interaction of Erv1 with the small Tims. Cytochrome c (cyt c) is the in vivo oxidase for Erv1, as yeast cells mutated in cyt c cannot grow under anaerobic conditions. Therefore, Erv1 functionally links the Mia40-dependent import pathway to the Mia40-independent cyt c import pathway transferring electrons from the incoming precursors to cyt c as an acceptor. In this context, the protein import process is linked to the respiratory chain via the communication of Erv1 with cyt c.  相似文献   

12.
Human serum amyloid P component (SAP) was expressed in the methylotrophic yeast Pichia pastoris. SAP cDNA was placed under control of regulatory sequences derived from the alcohol oxidase gene (AOX1), and its protein product was secreted using the Saccharomyces cerevisiae alpha-mating factor signal sequence. Recombinant SAP (r-SAP) was produced in a bioreactor with computer controlled fed-batch mode and purified by use of a C-terminal histidine tag. The yield of purified r-SAP was 3-4mg from 1L supernatant and 5-6mg from 1L cell paste, indicating that the majority of the produced SAP was not secreted. Treatment of the cell paste with EDTA increased the yield further by about 30%. The N-terminal of r-SAP purified from the supernatant showed non-complete cleavage of the alpha-mating factor signal sequence. Purified r-SAP, analyzed under native conditions, was shown to be a decamer, like purified human SAP (h-SAP), with monomers of 27kDa. Each monomer had one N-glycosylation site, positioned at the same site as for h-SAP. r-SAP bound to antibodies produced against h-SAP. Furthermore, r-SAP bound to ds DNA and influenza A virus subunits in a Ca(2+)-dependent manner and inhibited influenza A virus hemagglutination. These results indicate that r-SAP produced in P. pastoris has the same biological activity as purified h-SAP.  相似文献   

13.
As a novel attempt for the intracellular recombinant protein over expression and easy purification from Pichia pastoris, the therapeutic cytokine human granulocyte macrophage colony stimulating factor (hGMCSF) gene was fused to an intein-chitin-binding domain (gene from pTYB11 vector) fusion tag by overlap extension PCR and inserted into pPICZB vector, allowing for the purification of a native recombinant protein without the need for enzymatic cleavage. The fusion protein under the AOX1 promoter was integrated into the P. pastoris genome (SMD 1168) and the recombinant Pichia clones were screened for multicopy integrants. Expression of hGMCSF was done using glycerol and methanol based synthetic medium by three stage cultivation in a bioreactor. Purification of the expressed hGMCSF fusion protein was done after cell disruption and binding of the solubilized fusion protein to chitin affinity column, followed by DTT induced on column cleavage of hGMCSF from the intein tag. In this study, final biomass of 89 g dry cell weight/l and purified hGMCSF of 120 mg/l having a specific activity of 0.657 x 10(7) IU/mg was obtained. This strategy has an edge over the other--His or--GST based fusion protein purification where non-specific protein binding, expensive enzymatic cleavage and further purification of the enzyme is required. It distinguishes itself from all other purification systems by its ability to purify, in a single chromatographic step.  相似文献   

14.
Granulocyte–macrophage colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which has been used as a therapeutic agent in clinical cases like neutropenia. In this study, we report the production of recombinant human GM-CSF in the methylotrophic yeast Pichia pastoris through secretory expression using the inducible AOX1 promoter. Recombinant P. pastoris GS115 cells were grown in fed batch cultures to obtain a biomass density of 55.6 gDCW L−1 and a high volumetric activity of 131 mg L−1 of GM-CSF. The protein migrated as a diffuse band on SDS-PAGE at the range of 28–35 kDa indicating differential glycosylation. The secreted protein was purified to 95% in two steps using cation exchange and size exclusion chromatography.  相似文献   

15.
An increasing body of evidence ascribes to misfolded forms of cytochrome c (cyt c) a role in pathophysiological events such as apoptosis and disease. Here, we examine the conformational changes induced by lipid binding to horse heart cyt c at pH 7 and study the ability of ATP (and other nucleotides) to refold several forms of unfolded cyt c such as oleic acid-bound cyt c, nicked cyt c, and acid denatured cyt c. The CD and fluorescence spectra demonstrate that cyt c unfolded by oleic acid has an intact secondary structure, and a disrupted tertiary structure and heme environment. Furthermore, evidence from the Soret CD, electronic absorption, and resonance Raman spectra indicates the presence of an equilibrium of at least two low-spin species having distinct heme-iron(III) coordination. As a whole, the data indicate that binding of cyt c to oleic acid leads to a partially unfolded conformation of the protein, resembling that typical of the molten globule state. Interestingly, the native conformation is almost fully recovered in the presence of ATP or dATP, while other nucleotides, such as GTP, are ineffective. Molecular modeling of ATP binding to cyt c and mutagenesis experiments show the interactions of phosphate groups with Lys88 and Arg91, with adenosine ring interaction with Glu62 explaining the unfavorable binding of GTP. The finding that ATP and dATP are unique among the nucleotides in being able to turn non-native states of cyt c back to native conformation is discussed in the light of cyt c involvement in cell apoptosis.  相似文献   

16.
We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.  相似文献   

17.
A 410-nm absorbing species which enhanced the reduction rate of cytochrome c by Old Yellow Enzyme (OYE) with NADPH was found in Saccharomyces cerevisiae. It was solubilized together with OYE by the treatment of yeast cells with 10% ethyl acetate. The purified species showed visible absorption spectra in both oxidized and reduced forms, which were the same as those of the yeast microsomal cytochrome b5. At least 14 amino acid residues of the N-terminal region coincided with those of yeast microsomal b5, but the protein had a lower molecular weight determined to be 12,600 by SDS-PAGE and 9775 by mass spectrometry. The cytochrome b5-like protein enhanced the reduction rate of cytochrome c by OYE, and a plot of the reduction rates against its concentration showed a sigmoidal curve with an inflexion point at 6x10(-8) M of the protein.  相似文献   

18.
We have measured fluorescence energy-transfer (FET) kinetics from a dansyl fluorophore (Dns) introduced by derivatization of a Cys side-chain to the Fe(III) heme covalently attached to unfolded yeast iso-1 cytochrome c (cyt). To gain a global picture of the unfolded state, we examined variants with the fluorophore attached on three different helices (K4C, E66C, K99C) and in three different loops (H39C, D50C, L85C). Analysis of the FET kinetics data gave distributions of distances between the fluorescent donor and acceptor; these distributions demonstrate that the guanidine hydrochloride (GuHCl)-denatured polypeptide ensemble is not a simple random coil. Although misligation imposes some constraints, it is not the only source of structural complexity in the unfolded protein. Our FET kinetics data reveal a high degree of heterogeneity in the unfolded ensemble of cytochrome c. We detect relatively large populations of compact structures in unfolded Dns(C50)cyt, Dns(C39)cyt, and Dns(C66)cyt. These structures likely play a role in forming a hydrophobic core during the folding process.  相似文献   

19.
A distinct cysteine proteinase (NsCys) of northern shrimp Pandalus borealis belonging to cathepsin L subgroup of the papain superfamily has been overexpressed as a precursor form (proNsCys) in Pichia pastoris. We adopted a simple and quick procedure to generate an expression cassette by constructing a donor vector harboring proNsCys followed by recombination with an acceptor vector in a way so that the proNsCys gene was placed downstream of the methanol-inducible AOX1 promoter and alpha-mating factor signal sequence gene. In addition, we used glycerol complex medium that supported high growth of yeast before induction while induction was carried out in minimal methanol medium thereby facilitating the secreted protein to be purified with a single size-exclusion chromatography. The recombinant enzyme was purified in two enzymatically active fractions: both corresponding to mature NsCys with, however, the major one comprising two molecular species of NsCys which had their severed prodomain non-covalently attached. The overall yield was about 100 mg of crude or 60 mg of purified recombinant enzyme comprising both mature and prodomain-attached forms of NsCys per liter of yeast culture. The recombinant NsCys was biologically active as observed by gelatin zymography and its ability to cleave Z-Phe-Arg-MCA, a synthetic substrate for cathepsin L. The development of the system reported here provides a cost-effective and easy to manipulate expression system to obtain large quantities of fully functional shrimp enzyme that will enable the functional characterization of this unique enzyme for both research and industrial purposes.  相似文献   

20.
The human pancreatic lipase-related protein 2 (HPLRP2) was produced in the methylotrophic yeast Pichia pastoris. The HPLRP2 cDNA corresponding to the protein coding sequence including the native signal sequence, was cloned into the pPIC9K vector and integrated into the genome of P. pastoris. P. pastoris transformants secreting high-level rHPLRP2 were obtained and the expression level into the liquid culture medium reached about 40mg/L after 4 days of culture. rHPLRP2 was purified by a single anion-exchange step after an overnight dialysis. N-terminal sequence analysis showed that the purified rHPLRP2 mature protein possessed a correct N-terminal amino acid sequence indicating that its signal peptide was properly processed. Mass spectrometry analysis showed that the recombinant HPLRP2 molecular weight was 52,532Da which was 2451Da greater than the mass calculated from the sequence of the protein (50,081Da) and 1536Da greater than the mass of the native human protein (50,996Da). In vitro deglycosylation experiments by peptide:N-glycosidase F (PNGase F) indicated that rHPLRP2 secreted from P. pastoris was N-glycosylated. Specific conditions were setup in order to obtain a recombinant protein free of glycan chain. We observed that blocking glycosylation in vivo by addition of tunicamycin in the culture medium during the production resulted in a correct processing of the rHPLRP2 mature protein. The lipase activity of glycosylated or nonglycosylated rHPLRP2, which was about 800U/mg on tributyrin, was inhibited by the presence of bile salts and not restored by adding colipase. In conclusion, the experimental procedure which we have developed will allow us to get a high-level production in P. pastoris of glycosylated and nonglycosylated rHPLRP2, suitable for subsequent biophysical and structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号