首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli. Globin promoters from Bacillus subtilis, Campylobacter jejuni, Deinococcus radiodurans, Streptomyces coelicolor, Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTRmax) of 7 and 11 mmol L?1 h?1. Different FbFP fluorescence intensities were observed and the OTRmax affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor, the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli.  相似文献   

2.
3.
To clarify the interactions between a common food spoilage yeast and two pathogenic bacteria involved in outbreaks associated with fruit juices, the present paper studies the effect of the interplay of Candida krusei, collected from UF membranes, with Escherichia coli O157:H7 and Salmonella enterica in the overall process of adhesion and colonization of abiotic surfaces. Two different cases were tested: a) co-adhesion by pathogenic bacteria and yeasts, and b) incorporation of bacteria to pre-adhered C. krusei cells. Cultures were made on stainless steel at 25°C using apple juice as culture medium. After 24 h of co-adhesion with C. krusei, both E. coli O157:H7 and S. enterica increased their counts 1.05 and 1.11 log CFU cm2, respectively. Similar increases were obtained when incorporating bacteria to pre-adhered cells of Candida. Nevertheless C. krusei counts decreased in both experimental conditions, in a) 0.40 log CFU cm2 and 0.55 log CFU cm2 when exposed to E. coli O157:H7 and S. enterica and in b) 0.18 and 0.68 log CFU cm2, respectively. This suggests that C. krusei, E. coli O157:H7, and S. enterica have a complex relationship involving physical and chemical interactions on food contact surfaces. This study supports the possibility that pathogen interactions with members of spoilage microbiota, such as C. krusei, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella enterica in food-processing environments. Based on the data obtained from the present study, much more attention should be given to prevent the contamination of these pathogens in acidic drinks.  相似文献   

4.
THE bactericidal effect of rifampicin, a semi-synthetic rifamycin, is due to its action on DNA-dependent RNA polymerase1 and all rifampicin-resistant mutants of Escherichia coli contain an altered RNA polymerase with an increased resistance to rifampicin in vitro2–4. While studying a possible curing effect of rifampicin on E. coli R factors, we observed that R+ recombinants of some rif-r mutants are more sensitive to rifampicin (Table 1). Of the cells harbouring certain R factors, less than 1% are able to form colonies on rifampicin-supplemented agar, while with certain others there is no detectable effect.  相似文献   

5.
Gene yddG of Escherichia coli encodes a protein of the inner membrane. Data obtained earlier demonstrated that under conditions of aromatic amino acids overproduction YddG promotes their export from E. coli cells. In this work, a method of primer extension was used to localize the P yddG promoter, which corresponds to E. coli promoters recognized by RNA polymerase in complex with σ70 or σS subunits. By constructing a gene of the hybrid protein YddG’-LacZ at the intrinsic site of gene yddG location in the E. coli chromosome and analyzing the activity of β-galactosidase in cells growing on laboratory media LB and M9, the constitutive type of yddG expression at a low level was demonstrated (the activity was about 3 to 4% of the LacZ level under induction of the lac operon in E. coli wild-type cells). The expression of yddG had a twofold increase under conditions of retarded cell growth upon the stress caused by the high NaCl content (0.6 M) or by the presence of phenylalanine excess quantities (>1 mM) in the culture medium.  相似文献   

6.
Qβ-REPLICASE was isolated from E. coli infected with the RNA bacteriophage Qβ as RNA-dependent RNA polymerase which had template specificity1. RNA phage SP2, which is distinct from RNA phages isolated previously3,4, has been isolated in our laboratory and SP-replicase5 was purified from E. coli infected with SP-phage. SP-replicase has a template specificity different from that of Qβ-replicase. By using this new RNA-replicase, comparison between two distinct replicases has become possible.  相似文献   

7.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

8.
In this study, a novel engineering Escherichia coli strain (CBMG111) with the expression of mgtCB gene was constructed for the enhanced fermentative production of succinic acid by utilizing the synergetic effect of mgtC gene to improve the growth of strains at the environment of low Mg2+ concentration and mgtB to enhance the transport of Mg2+ into cells. After the effect of the expression of the individual genes (mgtA, mgtB, mgtC) on the growth of E. coli was clarified, the fermentative production of succinic acid by CBMG111 was studied with the low-price mixture of Mg(OH)2 and NH3·H2O as the alkaline neutralizer and the biomass hydrolysates as the carbon sources, which demonstrated that the expression of mgtCB gene can significantly increase the productivity of succinic acid (2.97 g L?1 h?1) compared with that by using the engineering strain with the overexpression of mgtA gene.  相似文献   

9.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

10.
RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.  相似文献   

11.
Escherichia coli can cause serious infections in the neonates and pregnant women. Although E. coli is widely studied, E. coli lactose-negative (lac?) strains have been rarely described before. So, the aim of this study was to compare lac? and lactose-positive (lac+) E. coli strains in respect of antimicrobial susceptibility and the frequency of virulence genes (VGs). The study included 58 lac+ and 58 lac? E. coli strains isolated from pregnant women and neonates. Culture and the results of biochemical reactions were conducted for lac? and lac+ E. coli identification and differentiation. Disc diffusion test was performed to study the antimicrobial susceptibility of the isolates, and PCR was used to detect VGs. Resistance to at least one of the tested antibiotics was found among 14 (25.9%) E. coli lac+ and in 26 (44.9%) E. coli lac? strains. Both lac+ and lac? E. coli strains were mostly resistant to ampicillin (22.4 and 39.7%) and ticarcillin (20.7 and 39.7%). None of the tested strains produced extended-spectrum β-lactamases (ESBLs). Genes fimH, fimA, iutA, sfa/foc, neuC, ibeA, and hlyF were detected, respectively, in 96.6, 82.8, 32.8, 24.1, 22.4, 12.1, and 6.9% of lac+ E. coli strains and in 94.8, 86.2, 48.3, 19.0, 8.6, 8.6, and 1.7% of lac? strains. The antimicrobial susceptibility and the pathogenic potential of both tested groups of E. coli strains are similar. Therefore, omitting E. coli lac? strains as a potential etiological agent of infections may pose a threat to the health and life of both mothers and neonates.  相似文献   

12.

Objectives

To achieve heterologous biosynthesis of dammarenediol-II, which is the precursor of dammarane-type tetracyclic ginsenosides, by reconstituting the 2,3-oxidosqualene-derived triterpenoid biosynthetic pathway in Escherichia coli.

Results

By the strategy of synthetic biology, dammarenediol-II biosynthetic pathway was reconstituted in E. coli by co-expression of squalene synthase (SS), squalene epoxidase (SE), NADPH-cytochrome P450 reductase (CPR) from Saccharomyces cerevisiae, and SE from Methylococcus capsulatus (McSE), NADPH-cytochrome P450 reductase (CPR) from Arabidopsis thaliana. Sequences of transmembrane domains were truncated if necessary in each of the genes. Different sources of SE/CPR combinations were tested, during which two CPRs were detected to be new reductase partners of McSE. When the gene encoding dammarenediol-II synthase was co-expressed with the 2,3-oxidosqualene expression modules, dammarenediol-II was detected and the production was 8.63 mg l?1 in E. coli under the shake-flask conditions.

Conclusions

Two E. coli chassis for production of dammarenediol-II were established which could be potentially applied in other triterpenoid production in E. coli when different oxidosqualene cyclases (OSCs) introduced into the system.
  相似文献   

13.
14.
Plant cold shock domain proteins (CSDPs) are DNA/RNA-binding proteins. CSDPs contain the conserved cold shock domain (CSD) in the N-terminal part and a varying number of the CCHC-type zinc finger (ZnF) motifs alternating with glycine-rich regions in the C-terminus. CSDPs exhibit RNA chaperone and RNA-melting activities due to their non-specific interaction with RNA. At the same time, there are reasons to believe that CSDPs also interact with specific RNA targets. In the present study, we used three recombinant CSDPs from the saltwater cress plant (Eutrema salsugineum)-EsCSDP1, EsCSDP2, EsCSDP3 with 6, 2, and 7 ZnF motifs, respectively, and showed that their nonspecific interaction with RNA is determined by their C-terminal fragments. All three proteins exhibited high affinity to the single-stranded regions over four nucleotides long within RNA oligonucleotides. The presence of guanine in the single-or double-stranded regions was crucial for the interaction with CSDPs. Complementation test using E. coli BX04 cells lacking four cold shock protein genes (ΔcspA, ΔcspB, ΔcspE, ΔcspG) revealed that the specific binding of plant CSDPs with RNA is determined by CSD.  相似文献   

15.
Escherichia coliL-asparaginase, an antileukaemic agent in man1, inhibits in vitro mitogen or antigen-induced blastogenesis in man2,3 and in animals (M. Bennett, E. G. Mayhew and T. Han, unpublished data) and suppresses bone-marrow derived antibody precursor cells in the mouse4. We now report that another L-asparaginase preparation—from Erwinia carotovora—also possesses antileukaemic activity5,6 and has a more pronounced immunosuppressive effect on in vitro blastogenesis than the E. coli enzyme.  相似文献   

16.
Escherichia coli can hardly grow anaerobically on glycerol without exogenous electron acceptor. The formate-consuming methanogen Methanobacterium formicicum plays a role as a living electron acceptor in glycerol fermentation of E. coli. Wild-type and mutant E. coli strains were screened for succinate production using glycerol in a co-culture with M. formicicum. Subsequently, E. coli was adapted to glycerol fermentation over 39 rounds (273 days) by successive co-culture with M. formicicum. The adapted E. coli (19.9 mM) produced twice as much succinate as non-adapted E. coli (9.7 mM) and 62% more methane. This study demonstrated improved succinate production from waste glycerol using an adapted wild-type strain of E. coli with wild-type M. formicicum, which is more useful than genetically modified strains. Crude glycerol, an economical feedstock, was used for the cultivation. Furthermore, the increase in methane production by M. formicicum during co-culture with adapted E. coli illustrated the possibility of energy-saving effects for the fermentation process.  相似文献   

17.
Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation’s purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg?1 with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2–6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ–COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics.  相似文献   

18.

Objectives

A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv).

Results

Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine.

Conclusions

The recombinant scFv could detect Neisseria strains at 106 CFU/ml.
  相似文献   

19.
In this study, we constructed an l-methionine-producing recombinant strain from wild-type Escherichia coli W3110 by metabolic engineering. To enhance the carbon flux to methionine and derepression met regulon, thrBC, lysA, and metJ were deleted in turn. Methionine biosynthesis obstacles were overcome by overexpression of metA Fbr (Fbr, Feedback resistance), metB, and malY under control of promoter pN25. Recombinant strain growth and methionine production were further improved by attenuation of metK gene expression through replacing native promoter by metK84p. Blocking the threonine pathway by deletion of thrBC or thrC was compared. Deletion of thrC showed faster growth rate and higher methionine production. Finally, metE, metF, and metH were overexpressed to enhance methylation efficiency. Compared with the original strain E. coli W3110, the finally obtained Me05 (pETMAFbr-B-Y/pKKmetH) improved methionine production from 0 to 0.65 and 5.62 g/L in a flask and a 15-L fermenter, respectively.  相似文献   

20.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号