首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5' untranslated region direct the efficient internal initiation of translation in vitro and within cells. In toeprinting assays, assembly of 48S preinitiation complexes from purified components on the PTV-1 IRES was achieved with just 40S ribosomal subunits plus eIF2 and Met-tRNA(i)(Met). Indeed, a binary complex between 40S subunits and the PTV-1 IRES is formed. Thus, the PTV-1 IRES has properties that are entirely different from other picornavirus IRES elements but highly reminiscent of the hepatitis C virus (HCV) IRES. Comparison between the PTV-1 IRES and HCV IRES elements revealed islands of high sequence identity that occur in regions critical for the interactions of the HCV IRES with the 40S ribosomal subunit and eIF3. Thus, there is significant functional and structural similarity between the IRES elements from the picornavirus PTV-1 and HCV, a flavivirus.  相似文献   

2.
Internal ribosome entry site (IRES) RNAs from the hepatitis C virus (HCV) and classical swine fever virus (CSFV) coordinate cap-independent assembly of eukaryotic 48S initiation complexes, consisting of the 40S ribosomal subunit, eukaryotic initiation factor (eIF) 3 and the eIF2/GTP/Met-tRNA(i)(Met) ternary complex. Here, we report that these IRESes also play a functional role during 80S ribosome assembly downstream of 48S complex formation, in promoting eIF5-induced GTP hydrolysis and eIF2/GDP release from the initiation complex. We show that this function is encoded in their independently folded IRES domain II and that it depends both on its characteristic bent conformation and two conserved RNA motifs, an apical hairpin loop and a loop E. Our data suggest a general mode of subunit joining in HCV and HCV-like IRESes.  相似文献   

3.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

4.
The cricket paralysis virus intergenic region internal ribosomal entry site (CrPV IGR IRES) can assemble translation initiation complexes by binding to 40S subunits without Met-tRNA(Met)(i) and initiation factors (eIFs) and then by joining directly with 60S subunits, yielding elongation-competent 80S ribosomes. Here, we report that eIF1, eIF1A and eIF3 do not significantly influence IRES/40S subunit binding but strongly inhibit subunit joining and the first elongation cycle. The IRES can avoid their inhibitory effect by its ability to bind directly to 80S ribosomes. The IRES's ability to bind to 40S subunits simultaneously with eIF1 allowed us to use directed hydroxyl radical cleavage to map its position relative to the known position of eIF1. A connecting loop in the IRES's pseudoknot (PK) III domain, part of PK II and the entire domain containing PK I are solvent-exposed and occupy the E site and regions of the P site that are usually occupied by Met-tRNA(Met)(i).  相似文献   

5.
Specific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) binding to IRES-40S complexes, forming 48S complexes that can assemble elongation-competent ribosomes. Although 48S complexes assembled both by eIF2/eIF3- and eIF5B/eIF3-mediated Met-tRNA(iMet) recruitment were destabilized by eIF1, dissociation of 48S complexes formed with eIF2 could be out-competed by efficient subunit joining. Deletion of IRES domain II, which is responsible for conformational changes induced in 40S subunits by IRES binding, eliminated the sensitivity of 48S complexes assembled by eIF2/eIF3- and eIF5B/eIF3-mediated mechanisms to eIF1-induced destabilization. However, 48S complexes formed by the eIF5B/eIF3-mediated mechanism on the truncated IRES could not undergo efficient subunit joining, as reported previously for analogous complexes assembled with eIF2, indicating that domain II is essential for general conformational changes in 48S complexes, irrespective of how they were assembled, that are required for eIF5-induced hydrolysis of eIF2-bound GTP and/or subunit joining.  相似文献   

6.
7.
Kim JH  Park SM  Park JH  Keum SJ  Jang SK 《The EMBO journal》2011,30(12):2454-2464
Translation of most mRNAs is suppressed under stress conditions. Phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF2), which delivers initiator tRNA (Met-tRNA(i)) to the P site of the 40S ribosomal subunit, is responsible for such translational suppression. However, translation of hepatitis C viral (HCV) mRNA is refractory to the inhibitory effects of eIF2α phosphorylation, which prevents translation by disrupting formation of the eIF2-GTP-Met-tRNA(i) ternary complex. Here, we report that eIF2A, an alternative initiator tRNA-binding protein, has a key role in the translation of HCV mRNA during HCV infection, in turn promoting eIF2α phosphorylation by activating the eIF2α kinase PKR. Direct interaction of eIF2A with the IIId domain of the HCV internal ribosome entry site (IRES) is required for eIF2A-dependent translation. These data indicate that stress-independent translation of HCV mRNA occurs by recruitment of eIF2A to the HCV IRES via direct interaction with the IIId domain and subsequent loading of Met-tRNA(i) to the P site of the 40S ribosomal subunit.  相似文献   

8.
Eukaryotic initiation factor 1 (eIF1) is a low molecular weight factor critical for stringent AUG selection in eukaryotic translation. It is recruited to the 43 S complex in the multifactor complex (MFC) with eIF2, eIF3, and eIF5 via multiple interactions with the MFC constituents. Here we show that FLAG epitope tagging of eIF1 at either terminus abolishes its in vitro interactions with eIF5 and eIF2beta but not that with eIF3c. Nevertheless, both forms of FLAG-eIF1 fail to bind eIF3 and are incorporated into the 43 S complex inefficiently in vivo. C-terminal FLAG tagging of eIF1 is lethal; overexpression of C-terminal FLAG-eIF1 severely impedes 43 S complex formation and derepresses GCN4 translation due to limiting of eIF2.GTP.Met-tRNA(i)(Met) ternary complex binding to the ribosome. Furthermore, N-terminal FLAG-eIF1 overexpression reduces eIF2 binding to the ribosome and moderately derepresses GCN4 translation. Our results provide the first in vivo evidence that eIF1 plays an important role in promoting 43 S complex formation as a core of factor interactions. We propose that the coordinated recruitment of eIF1 to the 40 S ribosome in the MFC is critical for the production of functional 40 S preinitiation complex.  相似文献   

9.
The pathway of HCV IRES-mediated translation initiation   总被引:12,自引:0,他引:12  
Otto GA  Puglisi JD 《Cell》2004,119(3):369-380
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.  相似文献   

10.
In eukaryotic translation initiation, the eIF2.GTP/Met-tRNA(i)(Met) ternary complex (TC) binds the eIF3/eIF1/eIF5 complex to form the multifactor complex (MFC), whereas eIF2.GDP binds the pentameric factor eIF2B for guanine nucleotide exchange. eIF5 and the eIF2Bvarepsilon catalytic subunit possess a conserved eIF2-binding site. Nearly half of cellular eIF2 forms a complex with eIF5 lacking Met-tRNA(i)(Met), and here we investigate its physiological significance. eIF5 overexpression increases the abundance of both eIF2/eIF5 and TC/eIF5 complexes, thereby impeding eIF2B reaction and MFC formation, respectively. eIF2Bvarepsilon mutations, but not other eIF2B mutations, enhance the ability of overexpressed eIF5 to compete for eIF2, indicating that interaction of eIF2Bvarepsilon with eIF2 normally disrupts eIF2/eIF5 interaction. Overexpression of the catalytic eIF2Bvarepsilon segment similarly exacerbates eIF5 mutant phenotypes, supporting the ability of eIF2Bvarepsilon to compete with MFC. Moreover, we show that eIF5 overexpression does not generate aberrant MFC lacking tRNA(i)(Met), suggesting that tRNA(i)(Met) is a vital component promoting MFC assembly. We propose that the eIF2/eIF5 complex represents a cytoplasmic reservoir for eIF2 that antagonizes eIF2B-promoted guanine nucleotide exchange, enabling coordinated regulation of translation initiation.  相似文献   

11.
Eukaryotic cells express a family of eukaryotic translation initiation factor 2 alpha (eIF2alpha) kinases (eg, PKR, PERK-PEK, GCN2, HRI) that are individually activated in response to distinct types of environmental stress. Phosphorylation of eIF2alpha by one or more of these kinases reduces the concentration of eIF2-guanosine triphosphate (GTP)-transfer ribonucleic acid for methionine (tRNA(Met)), the ternary complex that loads tRNA(Met) onto the small ribosomal subunit to initiate protein translation. When ternary complex levels are reduced, the related RNA-binding proteins TIA-1 and TIAR promote the assembly of a noncanonical preinitiation complex that lacks eIF2-GTP-tRNA(Met). The TIA proteins dynamically sort these translationally incompetent preinitiation complexes into discrete cytoplasmic domains known as stress granules (SGs). RNA-binding proteins that stabilize or destabilize messenger RNA (mRNA) are also recruited to SGs during stress. Thus, TIA-1 and TIAR act downstream of eIF2alpha phosphorylation to promote SG assembly and facilitate mRNA triage during stress. The role of the SG in the integration of translational efficiency, mRNA stability, and the stress response is discussed.  相似文献   

12.
We have examined the role of the mammalian initiation factor eIF1 in the formation of the 40 S preinitiation complex using in vitro binding of initiator Met-tRNA (as Met-tRNA(i).eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA. We observed that, although both eIF1A and eIF3 are essential to generate a stable 40 S preinitiation complex, quantitative binding of the ternary complex to 40 S subunits also required eIF1. The 40 S preinitiation complex contained, in addition to eIF3, both eIF1 and eIF1A in a 1:1 stoichiometry with respect to the bound Met-tRNA(i). These three initiation factors also bind to free 40 S subunits, and the resulting complex can act as an acceptor of the ternary complex to form the 40 S preinitiation complex (40 S.eIF3.eIF1.eIF1A.Met-tRNA(i).eIF2.GTP). The stable association of eIF1 with 40 S subunits required the presence of eIF3. In contrast, the binding of eIF1A to free 40 S ribosomes as well as to the 40 S preinitiation complex was stabilized by the presence of both eIF1 and eIF3. These studies suggest that it is possible for eIF1 and eIF1A to bind the 40 S preinitiation complex prior to mRNA binding.  相似文献   

13.
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.  相似文献   

14.
Majumdar R  Maitra U 《The EMBO journal》2005,24(21):3737-3746
Genetic studies in yeast have shown that the translation initiation factor eIF5 plays an important role in the selection of the AUG start codon. In order to ensure translation fidelity, the hydrolysis of GTP bound to the 40S preinitiation complex (40S.Met-tRNA(i).eIF2.GTP), promoted by eIF5, must occur only when the complex has selected the AUG start codon. However, the mechanism that prevents the eIF5-promoted GTP hydrolysis, prior to AUG selection by the ribosomal machinery, is not known. In this work, we show that the presence of initiation factors eIF1, eIF1A and eIF3 in the 40S preinitiation complex (40S.eIF1.eIF1A.eIF3.Met-tRNA(i).eIF2.GTP) and the subsequent binding of the preinitiation complex to eIF4F bound at the 5'-cap structure of mRNA are necessary for preventing eIF5-promoted hydrolysis of GTP in the 40S preinitiation complex. This block in GTP hydrolysis is released upon AUG selection by the 40S preinitiation complex. These results, taken together, demonstrate the biochemical requirements for regulation of GTP hydrolysis and its coupling to the AUG selection process during translation initiation.  相似文献   

15.
Eukaryotic translation initiation factor eIF2 is a heterotrimer that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Initiation requires hydrolysis of eIF2-bound GTP, which releases an eIF2.GDP complex that is recycled to the GTP form by the nucleotide exchange factor eIF2B. The alpha-subunit of eIF2 plays a critical role in regulating nucleotide exchange via phosphorylation at serine 51, which converts eIF2 into a competitive inhibitor of the eIF2B-catalyzed exchange reaction. We purified a form of eIF2 (eIF2betagamma) completely devoid of the alpha-subunit to further study the role of eIF2alpha in eIF2 function. These studies utilized a yeast strain genetically altered to bypass a deletion of the normally essential eIF2alpha structural gene (SUI2). Removal of the alpha-subunit did not appear to significantly alter binding of guanine nucleotide or Met-tRNA(i)(Met) ligands by eIF2 in vitro. Qualitative assays to detect 43 S initiation complex formation and eIF5-dependent GTP hydrolysis revealed no differences between eIF2betagamma and the wild-type eIF2 heterotrimer. However, steady-state kinetic analysis of eIF2B-catalyzed nucleotide exchange revealed that the absence of the alpha-subunit increased K(m) for eIF2betagamma.GDP by an order of magnitude, with a smaller increase in V(max). These data indicate that eIF2alpha is required for structural interactions between eIF2 and eIF2B that promote wild-type rates of nucleotide exchange. We suggest that this function contributes to the ability of the alpha-subunit to control the rate of nucleotide exchange through reversible phosphorylation.  相似文献   

16.
Environmental stress-induced phosphorylation of eIF2alpha inhibits protein translation by reducing the availability of eIF2-GTP-tRNA(i)Met, the ternary complex that joins initiator tRNA(Met) to the 43S preinitiation complex. The resulting untranslated mRNA is dynamically routed to discrete cytoplasmic foci known as stress granules (SGs), a process requiring the related RNA-binding proteins TIA-1 and TIAR. SGs appear to be in equilibrium with polysomes, but the nature of this relationship is obscure. We now show that most components of the 48S preinitiation complex (i.e., small, but not large, ribosomal subunits, eIF3, eIF4E, eIF4G) are coordinately recruited to SGs in arsenite-stressed cells. In contrast, eIF2 is not a component of newly assembled SGs. Cells expressing a phosphomimetic mutant (S51D) of eIF2alpha assemble SGs of similar composition, confirming that the recruitment of these factors is a direct consequence of blocked translational initiation and not due to other effects of arsenite. Surprisingly, phospho-eIF2alpha is recruited to SGs that are disassembling in cells recovering from arsenite-induced stress. We discuss these results in the context of a translational checkpoint model wherein TIA and eIF2 are functional antagonists of translational initiation, and in which lack of ternary complex drives SG assembly.  相似文献   

17.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

18.
eIF5 stimulates the GTPase activity of eIF2 bound to Met-tRNA(i)(Met), and its C-terminal domain (eIF5-CTD) bridges interaction between eIF2 and eIF3/eIF1 in a multifactor complex containing Met-tRNA(i)(Met). The tif5-7A mutation in eIF5-CTD, which destabilizes the multifactor complex in vivo, reduced the binding of Met-tRNA(i)(Met) and mRNA to 40S subunits in vitro. Interestingly, eIF5-CTD bound simultaneously to the eIF4G subunit of the cap-binding complex and the NIP1 subunit of eIF3. These interactions may enhance association of eIF4G with eIF3 to promote mRNA binding to the ribosome. In vivo, tif5-7A eliminated eIF5 as a stable component of the pre-initiation complex and led to accumulation of 48S complexes containing eIF2; thus, conversion of 48S to 80S complexes is the rate-limiting defect in this mutant. We propose that eIF5-CTD stimulates binding of Met-tRNA(i)(Met) and mRNA to 40S subunits through interactions with eIF2, eIF3 and eIF4G; however, its most important function is to anchor eIF5 to other components of the 48S complex in a manner required to couple GTP hydrolysis to AUG recognition during the scanning phase of initiation.  相似文献   

19.
Hepatitis C virus (HCV) infection represents a worldwide problem, and current antiviral regimens are not satisfactory. The need to develop novel, specific, anti-HCV antiviral drugs is clear. Antisense oligonucleotides (AS-ON), ribozymes, and more recently, small interfering RNAs (siRNAs) have been widely used to control gene expression, and several clinical trials are in progress. The potential to use AS-ON as tools to control HCV infection, either by promoting an RNase H mediated cleavage of viral genomic RNA or by interfering with the assembly of a translation initiation complex on the internal ribosome entry site (IRES) is reviewed. Extensive knowledge of IRES structure and conservation among HCV genotypes have rendered the HCV IRES (and, in particular, its IIId loop) particularly attractive for antisense approaches. Encouraging data have been obtained with IRES-targeted RNase H-competent and incompetent ON analogs. We demonstrate here that very short steric blocking ONs can inhibit the formation of translation preinitiation complexes on the IRES and block IRES-mediated translation in a cell-free translation assay and in a transfected hepatoma cell line.  相似文献   

20.
Hepatitis C virus translation is initiated on a approximately 330-nucleotide (nt)-long internal ribosomal entry site (IRES) at the 5' end of the genome. In this process, a 43S preinitiation complex (comprising a 40S ribosomal subunit, eukaryotic initiation factor 3 (eIF3), and a ternary [eIF2-GTP-initiator tRNA] complex) binds the IRES in a precise manner so that the initiation codon is placed at the ribosomal P site. This binding step involves specific interactions between the IRES and different components of the 43S complex. The 40S subunit and eIF3 can bind to the IRES independently; previous analyses revealed that eIF3 binds specifically to an apical half of IRES domain III. Nucleotides in the IRES that are involved in the interaction with the 40S subunit were identified by RNase footprinting and mapped to the basal half of domain III and in domain IV. Interaction sites were identified in locations that have been found to be essential for IRES function, including (i) the apical loop residues GGG(266-268) in subdomain IIId and (ii) the pseudoknot. Extensive protection from RNase cleavage also occurred downstream of the pseudoknot in domain IV, flanking both sides of the initiation codon and corresponding in length to that of the mRNA-binding cleft of the 40S subunit. These results indicate that the 40S subunit makes multiple interactions with the IRES and suggest that only nucleotides in domain IV are inserted into the mRNA-binding cleft of the 40S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号