首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J C Wu  P J Chen  M Y Kuo  S D Lee  D S Chen    L P Ting 《Journal of virology》1991,65(3):1099-1104
The hepatitis delta virus (HDV) is a defective virus with a coat composing of the surface antigen of its helper virus, hepatitis B virus (HBV). Replication of HDV in the absence of HBV has been shown in cell cultures by transient transfection of the HDV plasmid. However, the formation and release of HDV virions have not been observed. In this report, a human hepatoma cell line HuH-7 was transiently cotransfected with HDV and HBV plasmids. The production of monomeric and multimeric antigenomic RNAs of HDV in the transfected cells indicated replication of the HDV genome. The major 3.5- and 2.1-kb RNAs of HBV were also expressed. Virions of both HDV and HBV were released from the cotransfected cells, as shown by the detection of monomeric genomic HDV RNA and partially double-stranded HBV DNA in the culture medium. Thus, this is the first report that describes the assembly and the release of HDV viral particles in an in vitro cell culture. The HDV virions released possessed physicochemical properties identical to those of the HDV virions found in infected human serum. Furthermore, expression of both the 3.5- and 2.1-kb RNAs of HBV was shown to be dramatically decreased by the presence of HDV, indicating suppression of the expression of HBV genes by HDV. The amount of HBV virions released was similarly suppressed by HDV. Cotransfection of HBV with an expression plasmid of the HDV delta antigen remarkably reduced the levels of the 3.5- and 2.1-kb HBV RNAs, indicating that suppression of the expression of HBV RNAs by HDV occurs via the action of the delta antigen. This HBV- and HDV-cotransfected human hepatoma cell line should provide an excellent system for the study of the function of the delta antigen and the interaction between HDV and its helper, HBV.  相似文献   

2.
Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.  相似文献   

3.
The virus family Hepadnaviridae comprises two genera: orthohepadnaviruses isolated from humans (hepatitis B virus [HBV]) and rodents (e.g., woodchuck hepatitis virus [WHV]) and avihepadnaviruses isolated from birds (e.g., duck hepatitis B virus [DHBV]). They carry in their envelopes two (DHBV) or three (HBV and WHV) coterminal proteins referred to as small (S), middle (M), or large (L) surface protein. These proteins are also secreted from infected cells as subviral particles consisting of surface protein and lipid (e.g., 20-nm hepatitis B surface antigen for HBV). To investigate the assembly of these proteins, we asked whether surface proteins from different hepadnaviruses are able to mix phenotypically with each other. By coexpression and coimmunoprecipitation with species-specific antibodies, we could show the formation of mixed subviral particles and disulfide-linked heterodimers between the WHV S and HBV M proteins whereas the DHBV and HBV surface proteins did not coassemble. Complementation of HBV genomes defective in expressing the S or L protein and therefore incompetent to form virions was possible with the closely related WHV S protein or a WHV pre-S-HBV S chimera, respectively, but not with the less related DHBV S or L protein or with a DHBV L-HBV S chimera. The results suggest that the assembly of HBV subviral particles and virion envelopes requires relatively precise molecular interactions of their surface proteins, which are not conserved between the two hepadnavirus genera. This contrasts with the ability of, e.g., rhabdoviruses or retroviruses, to incorporate envelope proteins even from unrelated viruses.  相似文献   

4.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:14,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

5.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

6.
The hepatitis delta virus (HDV) genome is a circular, single-stranded, rod-shaped, 1.7-kb RNA that replicates via a rolling-circle mechanism. Viral ribozymes function to cleave replication intermediates which are then ligated to generate the circular product. HDV expresses two forms of a single protein, the small and large delta antigens (delta Ag-S and delta Ag-L), which associate with viral RNA in a ribonucleoprotein (RNP) structure. While delta Ag-S is required for RNA replication, delta Ag-L inhibits this process but promotes the assembly of the RNP into mature virions. In this study, we have expressed full-length and deleted HDV RNA inside cells to determine the minimal RNA sequences required for self-cleavage, ligation, RNP packaging, and virion assembly and to assess the role of either delta antigen in each of these processes. We report the following findings. (i) The cleavage and ligation reactions did not require either delta antigen and were not inhibited in their presence. (ii) delta Ag-L, in the absence of delta Ag-S, formed an RNP with HDV RNA which could be assembled into secreted virus-like particles. (iii) Full-length HDV RNAs were stabilized in the presence of either delta antigen and accumulated to much higher levels than in their absence. (iv) As few as 348 nucleotides of HDV RNA were competent for circle formation, RNP assembly, and incorporation into virus-like particles. (v) An HDV RNA incapable of folding into the rod-like structure was not packaged by delta Ag-L.  相似文献   

7.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins, the small delta antigen and the large delta antigen, which differ only with the latter having an additional 19 amino acids at the C-terminus. Previously, we have shown that dAg24-50, a synthetic peptide corresponding to residues 24-50 of the N-terminal leucine-repeat region of hepatitis delta antigen, binds to the viral RNA and forms an alpha-helical conformation in TFE-containing solution. However, it exhibited low alpha-helicity (less than 5%) in the absence of TFE. In order to obtain biologically active delta antigen peptides with higher structural stability in solution, an N-capping 21-residue polypeptide corresponding to residues 24-38 of hepatitis delta antigen (dAg(Cap24-38am)) was synthesized and, surprisingly, its solution structure was found to be a stable alpha-helix (64%) by circular dichroism and 1H NMR techniques. Moreover, the structure of the capping box shows the characteristic L-shaped bend perpendicular to the helix axis. This structural knowledge provides a molecular basis for understanding the role of the N-terminal leucine-repeat region of hepatitis delta antigen and has a significant potential for the development of diagnostic and therapeutic methods for HDV.  相似文献   

8.
Gudima S  He Y  Chai N  Bruss V  Urban S  Mason W  Taylor J 《Journal of virology》2008,82(15):7276-7283
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) share the HBV envelope proteins. When woodchucks chronically infected with woodchuck hepatitis virus (WHV) are superinfected with HDV, they produce HDV with a WHV envelope, wHDV. Several lines of evidence are provided that wHDV infects not only cultured primary woodchuck hepatocytes (PWH) but also primary human hepatocytes (PHH). Surprisingly, HBV-enveloped HDV (hHDV) and wHDV infected PHH with comparable efficiencies; however, hHDV did not infect PWH. The basis for these host range specificities was investigated using as inhibitors peptides bearing species-specific pre-S (where S is the small envelope protein) sequences. It was found that pre-S1 contributed to the ability of wHDV to infect both PHH and PWH. In addition, the inability of hHDV to infect PWH was not overcome using a chimeric form of hHDV containing WHV S protein, again supporting the essential role of pre-S1 in infection of target cells. One interpretation of these data is that host range specificity of HDV is determined entirely by pre-S1 and that the WHV and HBV pre-S1 proteins recognize different receptors on PHH.  相似文献   

9.
《Seminars in Virology》1993,4(5):313-317
Hepatitis delta virus (HDV) is a subviral satellite of human hepatitis B virus (HBV). The discovery in 1977 and subsequent demonstration of HDV as an infectious agent was primarily due to the work of Rizzetto and co-workers. In nature, HDV infections occur only if HBV is present. This is because HDV is a subviral satellite of HBV; HBV provides the envelope, or surface antigens, needed for the assembly of HDV particles. Other than this dependence, HDV seems fundamentally different from HBV; it has a single-stranded RNA genome and replicates via RNA-directed RNA synthesis. Five years ago the first nucleotide sequence of the genome was obtained and as a consequence we have progressively gained a picture of the genetic organization of this unusual agent and of its replication strategy.  相似文献   

10.
I J Lin  Y C Lou  M T Pai  H N Wu  J W Cheng 《Proteins》1999,37(1):121-129
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins: the small delta antigen and the large delta antigen. The two proteins resemble each other except for the presence of an additional 19 amino acids at the C terminus of the latter species. We have found that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg) binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. A 27-residue polypeptide corresponding to residues 24-50 of HDAg, designated dAg(24-50), was synthesized, and its solution structure was found to be an alpha-helix by circular dichroism and (1)H-nuclear magnetic resonance (NMR) techniques. Binding affinity of dAg(24-50) with HDV genomic RNA was found to increase with its alpha-helical content, and it was further confirmed by modifying its N- and C-terminal groups. Furthermore, the absence of RNA binding activity in the mutant peptides, dAgM(24-50am) and dAgM(Ac24-50am), in which Lys38, Lys39, and Lys40 were changed to Glu, indicates a possible involvement of these residues in their binding activity. Structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for the understanding of its role in the interaction with RNA. Proteins 1999;37:121-129.  相似文献   

11.
Hepatitis delta virus (HDV) infection of individuals infected with hepatitis B virus (HBV) is associated with more severe liver damage and an increased risk of fulminant disease. HDV is a single-stranded RNA virus that encodes a single protein, the delta antigen, which is expressed in two forms, small (S-HDAg) and large (L-HDAg). Here we show that although HDV ribonucleoproteins are mainly detected in the nucleus, they are also present in the cytoplasm of cells infected with HDV or transfected with HDV cDNA. Making use of an heterokaryon assay, we demonstrate that HDV ribonucleoproteins shuttle continuously between the nucleus and the cytoplasm. In the absence of HDV RNA, both forms of the delta antigen are retained in the nucleus, whereas in the absence of the delta antigen, HDV RNA is predominantly detected in the cytoplasm. Coexpression of HDV RNA and S-HDAg (which binds to the viral RNA and contains a nuclear localization signal) results in nuclear accumulation of the viral RNA. This suggests that HDV RNA mediates export of viral particles to the cytoplasm whereas the delta antigen triggers their reimport into the nucleus.  相似文献   

12.
Hepatitis delta virus (HDV) is a subviral agent of humans which is dependent upon hepatitis B virus as a helper for transmission. HDV can be experimentally transmitted to woodchucks by using woodchuck hepatitis virus (WHV) as the helper. We used this model system to study two types of HDV infections: those of animals already chronically infected with WHV and those of animals without any evidence of prior exposure to WHV. At 5 to 10 days after infection with HDV, liver biopsies of these two groups of animals indicated that around 1% of the hepatocytes were infected (HDV antigen positive). Moreover, similar amounts of replicative forms of HDV RNA were detected. In contrast, by 20 days postinfection, the two groups of animals were quite different in the extent of the HDV infection. The animals chronically infected with WHV showed spread of the infection within the liver and the release of high titers of HDV into the serum. In contrast, the animals not previously exposed to WHV showed a progressive reduction in liver involvement, and at no time up to 165 days postinfection could we detect HDV particles in the serum. However, if these animals were inoculated with a relatively high titer of WHV at either 7 or even 33 days after the HDV infection, HDV viremia was observed. Our data support the interpretation that in these animals, hepatocytes were initially infected in the absence of helper virus, HDV genome replication took place, and ultimately these replicating genomes were rescued by the secondary WHV infection. The observation that HDV can survive in the liver for at least 33 days in the absence of coinfecting helper virus may be relevant to the reemergence of HDV infection following liver transplantation.  相似文献   

13.
In the sera of patients infected with hepatitis B virus (HBV), in addition to infectious particles, there is an excess (typically 1,000- to 100,000-fold) of empty subviral particles (SVP) composed solely of HBV envelope proteins in the form of relatively smaller spheres and filaments of variable length. Hepatitis delta virus (HDV) assembly also uses the envelope proteins of HBV to produce an infectious particle. Rate-zonal sedimentation was used to study the particles released from liver cell lines that produced SVP only, HDV plus SVP, and HBV plus SVP. The SVP made in the absence of HBV or HDV were further examined by electron microscopy. They bound efficiently to heparin columns, consistent with an ability to bind cell surface glycosaminoglycans. However, unlike soluble forms of HBV envelope protein that were potent inhibitors, the SVP did not inhibit the ability of HBV and HDV to infect primary human hepatocytes.  相似文献   

14.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

15.
Hepatitis delta virus (HDV) particles are coated with the large (L), middle (M), and small (S) hepatitis B virus envelope proteins. In the present study, we constructed glycosylation-defective envelope protein mutants and evaluated their capacity to assist in the maturation of infectious HDV in vitro. We observed that the removal of N-linked carbohydrates on the S, M, and L proteins was tolerated for the assembly of subviral hepatitis B virus (HBV) particles but was partially inhibitory for the formation of HDV virions. However, when assayed on primary cultures of human hepatocytes, virions coated with S, M, and L proteins lacking N-linked glycans were infectious. Furthermore, in the absence of M, HDV particles coated with nonglycosylated S and L proteins retained infectivity. These results indicate that carbohydrates on the HBV envelope proteins are not essential for the in vitro infectivity of HDV.  相似文献   

16.
Blanchet M  Sureau C 《Journal of virology》2006,80(24):11935-11945
The hepatitis B virus (HBV) envelope proteins have the ability to assemble three types of viral particles, (i) the empty subviral particles (SVPs), (ii) the mature HBV virions, and (iii) the hepatitis delta virus (HDV) particles, in cells that are coinfected with HBV and HDV. To gain insight into the function of the HBV envelope proteins in morphogenesis of HBV or HDV virions, we have investigated subdomains of the envelope proteins that have been shown or predicted to lie at the cytosolic face of the endoplasmic reticulum membrane during synthesis, a position prone to interaction with the inner core structure. These domains, referred to here as cytosolic loops I and II (CYL-I and -II, respectively), were subjected to mutagenesis. The mutations were introduced in the three HBV envelope proteins, designated small, middle, and large (S-HBsAg, M-HBsAg, and L-HBsAg, respectively). The mutants were expressed in HuH-7 cells to evaluate their capacity for self-assembly and formation of HBV or HDV virions when HBV nucleocapsid or HDV ribonucleoprotein, respectively, was provided. We found that SVP-competent CYL-I mutations between positions 23 and 78 of the S domain were permissive to HBV or HDV virion assembly. One mutation (P29A) was permissive for synthesis of the S- and M-HBsAg but adversely affected the synthesis or stability of L-HBsAg, thereby preventing the assembly of HBV virions. Furthermore, using an in vitro infection assay based on the HepaRG cells and the HDV model, we have shown that particles coated with envelope proteins bearing CYL-I mutations were fully infectious, hence indicating the absence of an infectivity determinant in this region. Finally, we demonstrated that the tryptophan residues at positions 196, 199, and 201 in CYL-II, which were shown to exert a matrix function for assembly of HDV particles (I. Komla-Soukha and C. Sureau, J. Virol. 80:4648-4655, 2006), were dispensable for both assembly and infectivity of HBV virions.  相似文献   

17.
Replication of human hepatitis delta virus: recent developments   总被引:10,自引:0,他引:10  
In a natural setting, hepatitis delta virus (HDV) is only found in patients that are also infected with hepatitis B virus (HBV). In hepatocytes infected with these two viruses, HDV RNA genomes are assembled using the envelope proteins of HBV. Since 1986, we have known that HDV has a small single-stranded RNA genome with a unique circular conformation that is replicated using a host RNA polymerase. These and other features make HDV and its replication unique, at least among agents that infect animals. This mini-review focuses on advances gained over the last 2-3 years, together with an evaluation of HDV questions that are either unsolved or not yet solved satisfactorily.  相似文献   

18.
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.  相似文献   

19.
V Bichko  H J Netter    J Taylor 《Journal of virology》1994,68(8):5247-5252
Cationic liposomes are known to facilitate efficient transfection of animal cells with DNA and even some viruses. As reported here, we have been able to use such a commercially available formulation (Lipofectamine) and introduce human hepatitis delta virus (HDV) into lines of cultured cells and demonstrate replication of the HDV genome both by immunofluorescence and by Northern (RNA) analysis. As much as 10% of the human hepatoma cell line Huh7 was transfected with HDV. Also transfected were the baby hamster kidney cell line BHK-21 and the Morris rat hepatoma line 7777. Two initial applications of HDV transfection have been made. (i) The ribonucleoprotein structure of HDV was isolated from disrupted virions and demonstrated as being sufficient to transfect Huh7 cells. In contrast, naked HDV RNA was not sufficient. (ii) From a study of cells transfected with HDV particles, it was found that, even after as long as 7 weeks and the associated replication of the transfected cells, the HDV RNA genome was still replicating. Apparently, HDV, in the absence of helper virus and in the absence of virus assembly, can maintain persistent replication and expression of the HDV genome. Transfection was also achieved with woodchuck hepatitis virus introduced into Huh7 cells. In summary, this transfection procedure should be of use for the study of these and maybe other recalcitrant animal viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号