首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

3.
In the embryonic central nervous system of the fruit fly Drosophila, most neurons and glial cells are generated by asymmetric division of neural stem cells called neuroblasts. Several genes have been identified that are required for the establishment of neuroblast polarity, for the asymmetric segregation of cell fate determinants and for the proper orientation and geometry of the mitotic spindle. However, little was known about the interactions between these genes and their respective gene products. It has emerged that most of the relevant proteins are assembled into three major protein complexes whose molecular interactions are conserved in evolution.  相似文献   

4.
The mechanisms that maintain the orientation of cortical polarity and asymmetric division unchanged in consecutive mitoses in Drosophila melanogaster neuroblasts (NBs) are unknown. By studying the effect of transient microtubule depolymerization and centrosome mutant conditions, we have found that such orientation memory requires both the centrosome-organized interphase aster and centrosome-independent functions. We have also found that the span of such memory is limited to the last mitosis. Furthermore, the orientation of the NB axis of polarity can be reset to any angle with respect to the surrounding tissue and is, therefore, cell autonomous.  相似文献   

5.
The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies.  相似文献   

6.
Asymmetric cell division generates cell diversity during development and regulates stem-cell self-renewal in Drosophila and mammals. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)-G alpha i crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division.  相似文献   

7.
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.  相似文献   

8.
9.
Drosophila melanogaster is a key model system that has greatly contributed to the advance of developmental biology through its extensive and sophisticated genetics. Nevertheless, only a few in vitro approaches are available in Drosophila to complement genetic studies in order to better elucidate developmental mechanisms at the cellular and molecular level. Here we present a dissociated cell culture system generated from the optic lobes of Drosophila larval brain. This culture system makes it feasible to study the proliferative properties of Drosophila postembryonic Nbs by allowing BrdU pulse and chase assays, as well as detailed immunocytochemical analysis with molecular markers. These immunofluorescence experiments allowed us to conclude that localization of asymmetric cell division markers such as Inscuteable, Miranda, Prospero and Numb is cell autonomous. By time-lapse video recording we have observed interesting cellular features of postembryonic neurogenesis such us the polarized genesis of the neuroblast progeny, the extremely short ganglion mother cell (GMC) cell cycle, and the last division of a neuroblast lineage. The combination of this cell culture system and genetic tools of Drosophila will provide a powerful experimental model for the analysis of cell cycle and asymmetric cell division of neural progenitor cells.  相似文献   

10.
Asymmetric division is a fundamental mechanism for generating cellular diversity. Studies on Drosophila neural progenitors have provided valuable insight into how evolutionarily conserved protein cassettes may be differentially deployed in different developmental contexts to mediate asymmetric divisions. Recent findings also suggest possible mechanisms by which the processes of cell-cycle progression, neuronal lineage development and asymmetric divisions may be integrated.  相似文献   

11.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   

12.
Cell polarity must be integrated with tissue polarity for proper development. The Drosophila embryonic central nervous system (CNS) is a highly polarized tissue; neuroblasts occupy the most apical layer of cells within the CNS, and lie just basal to the neural epithelium. Neuroblasts are the CNS progenitor cells and undergo multiple rounds of asymmetric cell division, ;budding off' smaller daughter cells (GMCs) from the side opposite the epithelium, thereby positioning neuronal/glial progeny towards the embryo interior. It is unknown whether this highly stereotypical orientation of neuroblast divisions is controlled by an intrinsic cue (e.g. cortical mark) or an extrinsic cue (e.g. cell-cell signal). Using live imaging and in vitro culture, we find that neuroblasts in contact with epithelial cells always ;bud off' GMCs in the same direction, opposite from the epithelia-neuroblast contact site, identical to what is observed in vivo. By contrast, isolated neuroblasts 'bud off' GMCs at random positions. Imaging of centrosome/spindle dynamics and cortical polarity shows that in neuroblasts contacting epithelial cells, centrosomes remained anchored and cortical polarity proteins localize at the same epithelia-neuroblast contact site over subsequent cell cycles. In isolated neuroblasts, centrosomes drifted between cell cycles and cortical polarity proteins showed a delay in polarization and random positioning. We conclude that embryonic neuroblasts require an extrinsic signal from the overlying epithelium to anchor the centrosome/centrosome pair at the site of epithelial-neuroblast contact and for proper temporal and spatial localization of cortical Par proteins. This ensures the proper coordination between neuroblast cell polarity and CNS tissue polarity.  相似文献   

13.
During asymmetric cell division in Drosophila sensory organ precursor cells, the Numb protein localizes asymmetrically and segregates into one daughter cell, where it influences cell fate by repressing signal transduction via the Notch receptor. We show here that Numb acts by polarizing the distribution of alpha-Adaptin, a protein involved in receptor-mediated endocytosis. alpha-Adaptin binds to Numb and localizes asymmetrically in a Numb-dependent fashion. Mutant forms of alpha-Adaptin that no longer bind to Numb fail to localize asymmetrically and cause numb-like defects in asymmetric cell division. Our results suggest a model in which Numb influences cell fate by downregulating Notch through polarized receptor-mediated endocytosis, since Numb also binds to the intracellular domain of Notch.  相似文献   

14.
Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)-family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.  相似文献   

15.
In the Drosophila embryonic central nervous system, the neural precursor cells called neuroblasts undergo a number of asymmetric divisions along the apical-basal axis to give rise to different daughter cells of distinct fates. This review summarizes recent progress in understanding the mechanisms of these asymmetric cell divisions. We discuss proteins that are localized at distinct domains of cortex in the neuroblasts and their role in generating asymmetry. We also review uniformly cortical localized factors and actin cytoskeleton-associated motor proteins with regard to their potential role to serve as a link between distinct cortical domains in the neuroblasts. In this review, asymmetric divisions of sensory organ precursor and larval neuroblasts are also briefly discussed.  相似文献   

16.
Zhu Z  Bhat KM 《Mechanisms of development》2011,128(7-10):483-495
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.  相似文献   

17.
Although the vertebrate brain commonly stems from the neuroepithelial tube, the size and complexity of the pseudostratified organization of the brain have drastically expanded during mammalian evolution, resulting in the formation of a highly folded cortex. Developmental controls of neural progenitor divisions underlie these events. In this review, we introduce recent progress in understanding the control of proliferation and differentiation of neural progenitors from a structural point of view. We particularly shed light on the roles of epithelial structure and mitotic spindle orientation in the generation of various types of neural progenitors.  相似文献   

18.
19.
Drosophila melanogaster neuroblasts (NBs) undergo asymmetric divisions during which cell-fate determinants localize asymmetrically, mitotic spindles orient along the apical-basal axis, and unequal-sized daughter cells appear. We identified here the first Drosophila mutant in the Ggamma1 subunit of heterotrimeric G protein, which produces Ggamma1 lacking its membrane anchor site and exhibits phenotypes identical to those of Gbeta13F, including abnormal spindle asymmetry and spindle orientation in NB divisions. This mutant fails to bind Gbeta13F to the membrane, indicating an essential role of cortical Ggamma1-Gbeta13F signaling in asymmetric divisions. In Ggamma1 and Gbeta13F mutant NBs, Pins-Galphai, which normally localize in the apical cortex, no longer distribute asymmetrically. However, the other apical components, Bazooka-atypical PKC-Par6-Inscuteable, still remain polarized and responsible for asymmetric Miranda localization, suggesting their dominant role in localizing cell-fate determinants. Further analysis of Gbetagamma and other mutants indicates a predominant role of Partner of Inscuteable-Galphai in spindle orientation. We thus suggest that the two apical signaling pathways have overlapping but different roles in asymmetric NB division.  相似文献   

20.
Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号