首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fly》2013,7(2):121-125
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal β?1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.  相似文献   

2.
The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called “Microbial associated molecular patterns” that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.  相似文献   

3.
Structure and function of Toll-like receptor proteins   总被引:16,自引:0,他引:16  
Beginning in 1997 with the identification of the first human homologue of the Drosophila protein Toll, a family of related molecules have been identified in both humans and other mammals. These Toll-like receptor (TLR) proteins appear to represent a conserved family of innate immune recognition receptors. TLR proteins share extended homology with receptors for the cytokines interleukin 1 (IL-1) and interleukin 18 (IL-18). These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in cellular activation, thereby stimulating innate immune defenses. A variety of bacterial and fungal products have been identified that serve as TLR ligands, and more recent studies have identified the first endogenous protein ligands for TLR proteins. While TLR signaling is likely to be a key feature of innate immune responses, these proteins may also regulate homeostasis via interaction with endogenous protein ligands.  相似文献   

4.
We have re-investigated the role of the complement system and the non-opsonic pattern recognition receptors dectin-1 and dectin-2 in the recognition of fungal particles by inflammatory neutrophils, monocytes and macrophages. We have used in vivo and ex vivo models to study the recognition and response of these cells: i) We confirm previous observations regarding the importance of complement to neutrophil but not monocytic responses; ii) We show that dectin-1 is important for driving inflammatory cell recruitment to fungal stimuli and that it biases the immediate inflammatory response to one that favors neutrophil over monocyte recruitment; iii) We show that dectin-2 contributes to the physical recognition of fungal particles by inflammatory monocytes/macrophages, but is also expressed on neutrophils, where we show it has the potential to contribute to cellular activation; iv) Additionally, we show that serum-opsonization has the potential to interfere with non-opsonic recognition of fungal particles by dectin-1 and dectin-2, presumably through masking of ligands. Collectively these roles are consistent with previously described roles of dectin-1 and dectin-2 in driving inflammatory and adaptive immune responses and complement in containing fungal burdens. This study emphasizes the importance of heterogeneity of receptor expression across myeloid cell subsets in protective immune responses.  相似文献   

5.
Atherosclerosis is a chronic inflammatory response characterized by the accumulation of cells of innate and acquired immune systems within the intima of the arterial wall. Macrophages are the predominant participant in innate immune responses in atherosclerosis. Protein receptors expressed by macrophages and endothelial cells recognize components and products of microorganisms and play a vital role in innate immunity. In particular, the members of the toll-like receptor (TLR) family play a critical role in the inflammatory components of atherosclerosis. Both exogenous ligands involved in microbial recognition as well as endogenous ligands involved in sterile inflammation pathways are implicated in the pathology of atherosclerosis. In this review, we discuss our current understanding of the role of TLRs and their coactivators in atherosclerosis, with particular emphasis on studies in atherosclerosis-prone hypercholesterolemic mice.  相似文献   

6.
The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.  相似文献   

7.
固有免疫应答在动脉粥样硬化(atherosclerosis,As)的发生和发展中起重要作用.固有免疫应答细胞,包括单核/巨噬细胞、肥大细胞、自然杀伤细胞、中性粒细胞和树突状细胞,是机体抵御微生物和异物入侵的第一道防线.这些细胞广泛参与As中泡沫细胞形成、斑块内基质降解、细胞凋亡、血管新生和斑块破裂等事件.模式识别受体是免疫细胞上识别病原体(或某些内源性成分)相关分子模式的一类受体分子,包括Toll样受体和NOD样受体,介导固有免疫应答反应.Toll样受体在固有免疫应答细胞中具有不同程度的表达,在As中具有不同的作用,如TLR2和TLR4对As起促进作用,而TLR3具有As保护作用.NLRP3炎性体与动脉血管壁的早期损伤有关.对固有免疫应答细胞及模式识别受体在As形成中的作用进行深入研究,不仅有助于理解As的形成过程,而且还能为临床上防治心血管类疾病提供了新的治疗靶点和诊断指标.  相似文献   

8.
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.  相似文献   

9.
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.  相似文献   

10.
The identification of a major class of innate immune receptors, termed pattern recognition receptors (PRRs), has boosted research on innate pathogen recognition. The immune response to a specific pathogen is not restricted to the recognition by one type of PRR or activation of a single cell type, but instead comprises complex collaborations between different receptors, cells and signal mediators. Here we will discuss the cross-talk between PRRs involved in fungal recognition, focusing on the molecular interactions occurring at the plasma membrane.  相似文献   

11.
Innate immunity of fish (overview)   总被引:11,自引:0,他引:11  
The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.  相似文献   

12.
The first barrier against infection by Candida albicans involves fungal recognition and destruction by phagocytic cells of the innate immune system. It is well established that interactions between different phagocyte receptors and components of the fungal cell wall trigger phagocytosis and subsequent immune responses, but the fungal ligands mediating the initial stage of recognition have not been identified. Here, we describe a novel assay for fungal recognition and uptake by macrophages which monitors this early recognition step independently of other downstream events of phagocytosis. To analyze infection in live macrophages, we validated the neutrality of a codon-optimized red fluorescent protein (yEmRFP) biomarker in C. albicans; growth, hyphal formation, and virulence in infected mice and macrophages were unaffected by yEmRFP production. This permitted a new approach for studying phagocytosis by carrying out competition assays between red and green fluorescent yeast cells to measure the efficiency of yeast uptake by murine macrophages as a function of dimorphism or cell wall defects. These competition experiments demonstrate that, given a choice, macrophages display strong preferences for phagocytosis based on genus, species, and morphology. Candida glabrata and Saccharomyces cerevisiae are taken up by J774 macrophage cells more rapidly than C. albicans, and C. albicans yeast cells are favored over hyphal cells. Significantly, these preferences are mannan dependent. Mutations that affect mannan, but not those that affect glucan or chitin, reduce the uptake of yeast challenged with wild-type competitors by both J774 and primary murine macrophages. These results suggest that mannose side chains or mannosylated proteins are the ligands recognized by murine macrophages prior to fungal uptake.Candida albicans is an opportunistic fungus that normally resides in the human gut (26) and can cause mucosal infections. When host immune defenses are compromised or when anatomical breaches permit extreme fungal burdens, systemic and often lethal fungal colonization throughout the body can occur. In hospital-acquired bloodstream infections, the rate of mortality, hospital cost, and length of stay associated with disseminated candidiasis now outrank those associated with bacterial infections (37, 43). The most effective host barrier that limits Candida infections is microbial destruction by phagocytic cells of the innate immune system. In a healthy host, phagocytes—macrophages, neutrophils, and dendritic cells—recognize, ingest, and destroy the invading yeast by phagocytosis.The first step of a fungal infection requires the recognition of yeast by phagocytes. Despite the medical importance of this reaction, it remains poorly understood. As the interface between the yeast and its host, the fungal cell wall is crucial for recognition. The wall is a complex structure consisting of an elastic network of polysaccharides (glucans and chitin) that surrounds the plasma membrane and that in most yeast and fungi contains many different heavily mannosylated proteins (mannan) anchored to the wall in various ways (9, 27,29). Three distinct layers that correspond to these three components can be seen by electron microscopy. The innermost layer is enriched with a small amount of chitin, the outermost layer consists of mannan, and in between these layers are flexible fibrils of β1,3-glucan. Another glucan (β1,6 linked) is relatively minor in amount but is important for maintaining wall structure because it cross-links β1,3-glucan to wall proteins and to chitin (24, 30). Yeast survival relies on the integrity of the cell wall because it shields the yeast from physical stress and osmotic shock. The wall also maintains cell shape, which is a precondition for growth and morphogenesis. The rapid switch between the yeast and hyphal forms that is essential for C. albicans virulence underscores the plasticity of the wall, whose composition, thickness, and structure vary tremendously in response to changes in the environment.Many phagocytic receptors implicated in fungal recognition have been identified. The interactions between these receptors and fungal wall components activate an array of host defense signaling pathways that promote actin cytoskeletal rearrangements and the membrane remodeling required for phagocytosis, production of toxic metabolites and hydrolytic enzymes within the phagosome that destroy the ingested yeast, and secretion of cytokines that are pro- or anti-inflammatory (for a review, see references 18, 31, and 36). These receptors are members of the C-type lectin receptor and Toll-like receptor families and include proteins that can recognize mannose, glucan, and, possibly, chitin or, possibly, multiligand combinations of these carbohydrates (for reviews, see references 22 and 49). Despite a wealth of information about the signaling cascades elicited by these host receptors, the identity of the fungal cell wall ligands that mediate the initial recognition event during host-fungal interactions remains unclear, in large part because good model systems for studying host-fungal interactions in the context of the live infective environment have been unavailable. Most current assays of fungal recognition rely on indirect readouts, for instance, virulence or cytokine production, which cannot distinguish the initial step of fungal recognition from other downstream events of phagocytosis. In addition, different experimental systems for studying fungal phagocytosis use different cell types that may display unique interactions with C. albicans and vice versa. Thus, there are conflicts in the literature about the contributions of fungal cell wall components to host recognition and phagocytosis.Here, we make use of a novel assay to help clarify discrepancies that currently exist in this field. We developed a biologically neutral red fungal fluorescent biomarker that can be stably introduced into most yeast and fungi to monitor C. albicans-host interactions during infection in live cells or animals. This permitted development of quantitative competition assays to measure uptake by macrophages of red fluorescent protein (RFP)- or green fluorescent protein (GFP)-labeled cells as a single isolated event within the complex process of phagocytosis in live cells. We apply this system to address two fundamental questions regarding fungal recognition by murine macrophages. First, do these macrophages display a preference toward yeast forms versus filamentous fungal forms, and second, how do the various fungal cell wall components contribute to this preference during the initial stage of fungal recognition? We demonstrate that, given a choice, J774 macrophages recognize and ingest yeast cells far more rapidly and efficiently than hyphal cells. Importantly, competitive fungal uptake by murine macrophages, both immortalized cell lines and primary cells, is markedly inhibited by reduction of cell wall mannan but not glucan or chitin. This points to a critical role for mannose side chains or mannosylated proteins as key fungal recognition ligands.  相似文献   

13.
The innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.  相似文献   

14.
The biology of Toll-like receptors   总被引:24,自引:0,他引:24  
In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion.  相似文献   

15.
Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo—a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1) and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.  相似文献   

16.
Dendritic cells (DCs) have an important function in the initiation and differentiation of immune responses, linking innate information to tailored adaptive responses. Depending on the pathogen invading the body, specific immune responses are built up that are crucial for eliminating the pathogen from the host. Host recognition of invading microorganisms relies on evolutionarily ancient, germline-encoded pattern recognition receptors (PRRs) that are highly expressed on the cell surface of DCs, of which the Toll-like receptors (TLRs) are well characterized and recognize bacterial or viral components. Moreover, they bind a variety of self-proteins released from damaged tissues including several heat-shock proteins. The membrane-associated C-type lectin receptors (CLRs) recognize glycan structures expressed by host cells of the immune system or on specific tissues, which upon recognition allow cellular interactions between DCs and other immune or tissue cells. In addition, CLRs can function as PRRs. In contrast to TLRs, CLRs recognize carbohydrate structures present on the pathogens. Modification of glycan structures on pathogens to mimic host glycans can thereby alter CLR interactions that subsequently modifies DC-induced polarization. In this review, we will discuss in detail how specific glycosylation of antigens can dictate both the innate and adaptive interactions that are mediated by CLRs on DCs and how this balances immune activation and inhibition of DC function.  相似文献   

17.
The host response to fungi is in part dependent on activation of evolutionarily conserved receptors, including toll-like receptors and phagocytic receptors. However, the molecular nature of fungal ligands responsible for this activation is largely unknown. Herein, we describe the isolation and structural characterization of an alpha-glucan from Pseudallescheria boydii cell wall and evaluate its role in the induction of innate immune response. These analyses indicate that alpha-glucan of P. boydii is a glycogen-like polysaccharide consisting of linear 4-linked alpha-D-Glcp residues substituted at position 6 with alpha-D-Glcp branches. Soluble alpha-glucan, but not beta-glucan, led to a dose-dependent inhibition of conidia phagocytosis. Furthermore, a significant decrease in the phagocytic index occurred when alpha-glucan from conidial surface was removed by enzymatic treatment with alpha-amyloglucosidase, thus indicating an essential role of alpha-glucan in P. boydii internalization by macrophages. alpha-Glucan stimulates the secretion of inflammatory cytokines by macrophages and dendritic cells; again this effect is abolished by treatment with alpha-amyloglucosidase. Finally, alpha-glucan induces cytokine secretion by cells of the innate immune system in a mechanism involving toll-like receptor 2, CD14, and MyD88. These results might have relevance in the context of infections with P. boydii and other fungi, and alpha-glucan could be a target for intervention during fungal infections.  相似文献   

18.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants.  相似文献   

19.
Pattern recognition proteins in Manduca sexta plasma   总被引:10,自引:0,他引:10  
Recognition of nonself is the first step in mounting immune responses. In the innate immune systems of both vertebrates and arthropods, such recognition, termed pattern recognition, is mediated by a group of proteins, known as pattern recognition proteins or receptors. Different pattern recognition proteins recognize and bind to molecules (molecular patterns) present on the surface of microorganisms but absent from animals. These molecular patterns include microbial cell wall components such as bacterial lipopolysaccharide, lipoteichoic acid and peptidoglycan, and fungal beta-1,3-glucans. Binding of pattern recognition proteins to these molecular patterns triggers responses such as phagocytosis, nodule formation, encapsulation, activation of proteinase cascades, and synthesis of antimicrobial peptides. In this article, we describe four classes of pattern recognition proteins, hemolin, peptidoglycan recognition protein, beta-1,3-glucan recognition proteins, and immulectins (C-type lectins) involved in immune responses of the tobacco hornworm, Manduca sexta.  相似文献   

20.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号