首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute renal failure was induced in male rats by the subcutaneous injectioon of 4 mg HgC12 per kg body weight. Enzyme activities of the proximal tubule were studied histochemically at six time intervals from 15 min to 24 h. The enzyme studied were alkaline phosphatase, 5'-nucleotidase, acid phosphatase, alpha-glycerophosphate dehydrogenase (NAD-independent), malic dehydrogenase, succinic dehydrogenase, latic dehydrogenase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase. Decreases in activity were observed for alkaline phosphatase and 5'-nucleotidase after 15 min. Acid phosphatase was decreased after 30 min. These three enzymes returned to control levels after 3 h, but malic dehydrogenase and alpha-glycerophosphate dehydrogenase were decreased at this time interval. Succinic dehydrogenase was first decreased after 6 h. The earliest morphological changes detectable by light microscopy were observed in pars recta tubules in the medullary rays after 6 h, a time when all enzymes studied showed widespread decreased activity throughout the proximal tubule. After 24 h, the pars convoluta appeared morphologically normal but the pars recta was necrotic and exhibited calcification, whereas enzyme activity was decreased (absent in some cases) in both pars convoluta and pars recta. These results support the hypothesis that Hg++, when given in a sublethal dose, is associated with early histochemical changes in the brush border of the proximal tubule, which may be related to early changes in sodium reabsorption and to the subsequent development of acute renal failure. The observation that changes in plasma membrane-associated enzymes occur early and prior to alterations in enzymes of mitochondria and the endoplasmic reticulum suggests that Hg++ interacts initially with the plasma membrane.  相似文献   

2.
The GTP-binding proteins on luminal and basolateral membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit proximal tubule have been examined. The membrane vesicles were highly purified, as ascertained by electron microscopy, by measurements of marker enzymes, and by investigating segmental-specific transport systems. The [35S]GTP gamma S binding to vesicles, and to sodium cholate-extracted proteins from vesicles, indicated that the total content of GTP-binding proteins were equally distributed on pars convoluta, pars recta luminal and basolateral membranes. The membranes were ADP-ribosylated with [32P]NAD+ in the presence of pertussis toxin and cholera toxin. Gel electrophoresis revealed, for all preparations, the presence of cholera toxin [32P]ADP-ribosylated 42 and 45 kDa G alpha s proteins, and pertussis toxin [32P]ADP-ribosylated 41 kDa G alpha i1, 40 kDa G alpha i2 and 41 kDa G alpha i3 proteins. The 2D electrophoresis indicated that Go's were not present in luminal nor in basolateral membranes of pars convoluta or pars recta of rabbit proximal tubule.  相似文献   

3.
Peptidases in the kidney and urine of rats after castration   总被引:2,自引:0,他引:2  
Summary The localization of various peptidases in the renal section of the rat was investigated histochemically, and their activities were determined fluorometrically in renal homogenate. The membrane-bound peptidases aminopeptidase A (APA), aminopeptidase M (APM), -glutamyl-transferase (-GT), dipeptidylpeptidase IV (DAP IV), and the lysosomal dipeptidyl peptidases I (DAP I) and II (DAP II) were investigated in male and female (estrus) rats both before and 30 days after castration. In addition, protein excretion and APA, APM, DAP I and DAP IV activities were measured in the urine of these animals. Histochemically, the membrane-bound peptidases are demonstrable mainly in the brush borders of the proximal tubules. In addition, APA and DAP IV are found in the glomeruli, -GT and DAP IV in the thin descending limbs of the loops of Henle, and -GT in the basal labyrinth of the S2 and S3 segments. The lysosomal peptidases are most concentrated in the S1 and S2 segments of the proximal tubule, in the distal tubule, and in certain cells of the connecting tubule and collecting duct, where they are contained in lysosomes of varying size. Sex differences and castration effects are demonstrable both histochemically and biochemically for the investigated peptidases. Histochemically these effects are most pronounced in the S3 segments for the membrane-bound peptidases, and in the lysosomes of the proximal tubule for the lysosomal peptidases. Biochemical tests in controls show significantly higher lysosomal peptidase activities in the renal homogenate of females than of males. After castration the lysosomal peptidase activities in males increase, approaching those of females. This appears to have bearing on the sex-dependent proteinuria in rats, for lysosomal peptidases and proteinases are particularly important in the degradation of filtered proteins that are reabsorbed in the proximal tubule. In females high lysosomal peptidase activities correlate with a low proteinuria, while males demonstrate lower lysosomal peptidase activities and a significantly higher proteinuria than females. After castration, the lysosomal peptidase activities and proteinuria in males approach those in females. Renal peptidases are also excreted in the urine, again with sex differences, and so these excreted peptidases contribute to the proteinuria in rats.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

4.
Uptake of D-alanine against a concentration gradient has been shown to occur with isolated luminal-membrane vesicles from pars convoluta or pars recta of rabbit proximal tubule. Renal D-alanine transport systems, displaying the following characteristics, were shown: (1) In vesicles from pars convoluta, the uptake of D-alanine was mediated by both Na+-dependent and Na+-independent transport processes. It was found that an inwardly directed H+-gradient could drive the transport of D-alanine into the vesicles both in the presence and absence of Na+. Thus, in addition to Na+, the transport of D-alanine is influenced by the H+-gradient. (2) In vesicles from pars recta, the transient accumulation of D-alanine was strictly dependent on Na+, since no 'overshoot' was ever observed in the absence of Na+. Although the Na+-dependent uptake of D-alanine was stimulated at acid pH, H+ did not substitute for Na+, as it apparently does in pars convoluta, but instead potentiated the Na+ effect. (3) Addition of L-alanine to vesicle preparations, both from pars convoluta and from pars recta, specifically inhibited renal uptake of D-alanine. A comparison between the transport characteristics of D- and L-alanine indicated that these two isomers of alanine probably share common transport systems located along the proximal tubule of rabbit kidney.  相似文献   

5.
Summary The morphology of tight junctions of the renal proximal tubule was studied comparing the pars convoluta and pars recta of rat, golden hamster, rabbit, cat, dog and tupaia. Though some interspecies variations were observed, the convoluted portions of the proximal tubules revealed quite uniformly very leaky tight junctions with mainly 1–2 strands.Along the whole proximal tubule of the rabbit kidney including the pars recta only minor differences of the zonulae occludentes were found. By contrast, the tight junctions of the pars recta in other species were much more elaborate, especially in cat and tupaia, having up to 6 strands and an overall depth of more than 150 nm. The implications of these findings are discussed with special regard to the functional differences between the pars convoluta and pars recta of the proximal tubule.This work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

6.
The localization of aminopeptidase M (APM), dipeptidyl peptidase I (DAP I), II (DAP II) and IV (DAP IV) in the renal section was investigated histochemically, and their activities were determined fluorometrically in renal homogenate of normal, castrated and testosteron treated male rats.--After castration the activities of the lysosomal DAP II (pars convoluta of the proximal tubule), DAP I (distal and proximal tubule) and of the mainly membrane-bound DAP IV (glomeruli, brush border of the proximal tubule) increase in comparison to normal males, whereas the activities of the brush border-bound APM decrease. After testosteron treatment of castrated animals (0.1, 0.5 and 1.0 mg testosterone proprionate/100 g BW and day; 5-day treatment) the activities of DAP I, II and IV decrease again, so that after treatment with 0.1 mg testosterone proprionate, the activities of DAP I and II approach those in normal males.--The additionally determined urinary protein excretion shows that there is a significant decrease in proteinuria after castration, whereas testosterone treatment of castrated animals is accompanied by an increase of proteinuria.--Our results would suggest that the protein catabolism in the proximal tubule and the proteinuria are interrelated, and that testosterone influences (decreases) the protein catabolism in the proximal tubule. This means that high activities of lysosomal proteinases in the proximal tubule (castrates) are accompanied by a low proteinuria, and low activities of those proteinases (testosterone treated castrated or normal males) by a high proteinuria.  相似文献   

7.
The characteristics of D- and L-lactate transport in luminal-membrane vesicles derived from whole cortex, from the pars convoluta and from the pars recta of rabbit kidney proximal tubule were studied. It was found that uptake of both isomers in vesicles from whole cortex occurred by means of dual electrogenic transport systems, namely a low-affinity system and a high-affinity system. Uptake of both isomers in vesicles from the pars recta was strictly Na+-dependent and is mediated via a single high-affinity common transport system. Vesicles from the pars convoluta contained a cation-dependent but Na+-unspecific low-affinity common transport system for these compounds. The physiological importance of this system is briefly discussed.  相似文献   

8.
The characteristics of renal transport of D-galactose by luminal membrane vesicles from either whole cortex, pars recta or pars convoluta of rabbit proximal tubule were investigated by a spectrophotometric method using a potential-sensitive carbocyanine dye. Uptake of D-galactose by luminal membrane vesicles prepared from whole cortex was carried out by an Na+-dependent and electrogenic process. Eadie-Hofstee analysis of saturation-kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for the uptake of D-galactose. Tubular localization of the transport systems was studied by the use of vesicles derived from pars recta and pars convoluta. In pars recta, Na+-dependent transport of D-galactose and D-glucose occurred by means of a high-affinity system (half-saturation: D-galactose, 0.15 +/- 0.02 mM; D-glucose, 0.13 +/- 0.02 mM). These results indicated that the "carrier' responsible for the uptake of these hexoses does not discriminate between the steric position of the C-4 hydroxyl group of these two isomers. This is further confirmed by competition experiments, which showed that D-galactose and D-glucose are taken up by the same and equal affinity transport system by these vesicle preparations. Uptake of D-galactose and D-glucose by luminal membrane vesicles isolated from pars convoluta was mediated by a low-affinity common transport system (half-saturation: D-galactose, 15 +/- 2 mM; D-glucose, 2.5 +/- 0.5 mM). These findings strongly suggested that the "carrier' involved in the transport of monosaccharides in vesicles from pars convoluta is specific for the steric position of the C-4 hydroxyl group of these sugars and presumably interacts only with D-glucose at normal physiological concentration.  相似文献   

9.
Rats were anesthetized and their lift kidneys were made ischemic for 1 h by clamping of the aorta just above the left renal artery. Mannitol (2.5 g/kg), Dextran 70 (0.6 g/kg), methylprednisolone (50 and 100 mg/kg), and allopurinol (100 mg/kg body weight) were administered before, during, or after the ischemia period in order to test the effect of each of these drugs upon this model of renal injury. At 24 h after the release of the aortic clamp the left kidneys of the drug treated animals wwere perfusion fixed and processed for light and electron microscopy. Dextran administration to animals with ischemic kidneys gave rise to a pronounced vacuolization ("osmotic nephrosis"), in the entire proximal tubule and especially in the pars recta. This was in contrast to dextran administration to rats with nonischemic kidenys, which showed no or very mild "osmotic nephrosis." This demonstrates that ischemia makes rat kidneys more susceptible to the development of "osmotic nephrosis." In controls (no drug treatment) one hour of renal ischemia gave partial necrosis of pars recta of the proximal tubule, while the pars convoluta tubule survived. Mannitol treatment significantly reduced the amount of necrosis of the pars recta, whereas dextran, methylprednisolone, and allopurinol had no or a negative effect on the survival of the cells of the pars recta segment. It is suggested that mannitol protects against the development of necrosis by increasing medullary blood flow in combination with a counteractive influence on the cellular swelling, which is known to occur in ischemia.  相似文献   

10.
Na+-H+-exchanger activity of pars convoluta and pars recta luminal-membrane vesicles prepared from the proximal tubule of acidotic and control rabbits were assayed by a rapid-filtration technique and an Acridine Orange method. Both experimental approaches revealed the existence of an antiporter, sensitive to metabolic acidosis, in pars convoluta membrane vesicles. Kinetic data, obtained with the pH-sensitive dye, showed that the Km for Na+ transport was unchanged by acidosis, whereas Vmax. for exchanger activity was increased, on an average, by 44%. The fluorescence method, in contrast with the rapid-filtration technique, was able to detect exchanger activity in pars recta membrane vesicles. The Km value for the antiporter located in pars recta is comparable with that calculated for pars convoluta membrane vesicles. By contrast, the Vmax. of this exchanger is only about 25% of that found for pars convoluta. Furthermore, metabolic acidosis apparently does not increase Na+-H+-exchanger activity of pars recta luminal-membrane vesicles.  相似文献   

11.
Rabbit proximal nephron segments were microperfused in vitro to determine whether active contraluminal uptake of serine occurs in the renal proximal tubule during bath-to-lumen transport (influx) of the L- and D-isomers in the convoluted (pars convoluta) and straight (pars recta) segments. It is known that several amino acids are actively reabsorbed in the proximal nephron by a mechanism involving co-transport with sodium at the luminal membrane. There is some evidence that certain amino acids may also be accumulated across the contraluminal membrane by an energy-dependent mechanism, indicating that net reabsorption is the result of two oppositely directed active transport processes. During in vitro microperfusion of rabbit proximal nephron segments in this study, inward movement of L- and D-serine occurred in a bath-to-cell direction against a concentration gradient in the range 305-2735:1, indicating active uptake at the contraluminal membrane. The concentration gradients were maintained during influx of both isomers of serine in the proximal tubule. L-Serine accumulation by tubular cells was similar in the pars convoluta and recta, and significantly greater than that of D-serine, which was the same in both regions of the proximal tubule. The data support the conclusion that renal handling of serine involves active contraluminal uptake of the L- and D-isomers in both regions of the proximal tubule, and suggest that contraluminal events play an important role in renal handling of amino acids.  相似文献   

12.
Summary After castration of 90-day-old male and female rats, changes appear in the renal proximal tubule. A distinction can be made between early changes (up to 10th postoperative day) and later changes (20th–30th postoperative day). Between the 3rd and 5th day after castration the kidney of the females shows an increase in free estrogen receptors (biochemical studies) which are localized in the pars contorta of the proximal tubule (autoradiographic studies), while the male kidney shows a marked increase in urinary protein excretion up to the 10th day after castration. Proximal tubule changes detectable histochemically and electron microscopically do not appear until day 20 or 30 after castration. The results of castration are similar in segments S1 and S2. By days 20 and 30 after castration there is a decrease in the activity of lysosomal enzymes (acid phosphatase, acid -galactosidase). Electron microscopy shows a conspicuous decrease in the number of giant lysosomes (mainly in females) and apical vacuoles (mainly in males). A marked increase in the number of lysosomes is found in the S3 segment; females always have more lysosomes than males. The number of peroxisomes is also greatly increased; they appear circular in the females but can assume bizarre shapes in the males. Lipid droplets appear in the basal region of the tubule cell of segments S2 and S3 in the males. The sex differences are preserved in all segments even after castration and become even more pronounced in the S3 segment.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)Dedicated to Prof. Dr. W. Graumann, Department of Anatomy, University of Tübingen, on the occasion of his 65th birthday  相似文献   

13.
1. The ability to hydrolyse various phosphodiesterase substrates was examined in subcellular fractions of rat kidney and in serial slices of the kidneys of mouse, rat, guinea pig and ox cut from the cortex perimeter inwards. 2. d-Inositol 1:2-cyclic phosphate 2-phosphohydrolase could be clearly distinguished from phosphodiesterases which hydrolyse 2':3'- and 3':5'-cyclic AMP and p-nitrophenyl thymidine 5'-phosphate (phosphodiesterase I). The hydrolysis of sn-glycero-3-phosphorylcholine showed a distribution identical with that of particle-bound d-inositol 1:2-cyclic phosphate 2-phosphodiesterase, but there was a 30-fold difference in the ratio of enzyme activities between the rat and guinea pig. 3. In rat and mouse kidney, d-inositol 1:2-cyclic phosphate 2-phosphohydrolase is virtually all membrane bound and in the outer cortex, whereas in guinea-pig kidney the enzyme is almost entirely soluble and located throughout the kidney tissue. Some properties of the soluble enzyme are described. 4. Distribution and histochemical studies indicated that in the rat and mouse, phosphodiesterase I is associated with the brush borders of the straight portion (pars recta) of the proximal tubule, whereas inositol 1:2-cyclic phosphate 2-phosphohydrolase and probably glycerylphosphorylcholine diesterase are associated with the brush borders of the convoluted part of the tubule (pars convoluta).  相似文献   

14.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

15.
Characteristics of 22Na+ fluxes through Na+ channels in luminal-membrane vesicles isolated from either pars recta or pars convoluta of rabbit proximal tubule were studied. In NaCl-loaded vesicles from pars recta, transient accumulation of 22Na+ is observed, which is inhibited by amiloride. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using either these membrane vesicles loaded with different anions, or an outwardly directed K+ gradient with a K+ ionophore valinomycin. The vesicles containing the channel show a cation selectivity with the order Li+ greater than Na+ greater than K+. The amiloride-sensitive 22Na+ flux is dependent on intravesicular Ca2+. In NaCl-loaded vesicles from pars convoluta, no overshoot for 22Na+ uptake is observed. Furthermore, addition of amiloride to the incubation medium did not influence the uptake of 22Na+ in these vesicle preparations. It is concluded that Na+ channels are only present in pars recta of rabbit proximal tubule.  相似文献   

16.
Summary The three segments (S1, S2, S3) of the proximal tubule of the rat kidney were investigated, with special reference to lysosomes, after castration, estradiol application, and at the end of pregnancy. Especially in S1 and S2 castration induces an increase of cellular autophagy. The nuclei become smaller; endoplasmic reticulum (ER), ribosomes, and Golgi apparatus are reduced; catabolism predominates. In S1 more giant lysosomes occur; the total number of lysosomes increases whereas acid phosphatase activity decreases at the same time. Sex differences which exist in untreated animals disappear. Substitution with estradiol causes an activation of the proximal tubule cells: Heterophagy predominates, and cellular autophagy is reduced. Nuclear size is unchanged; ER, ribosomes and Golgi apparatus show a clear increase. Giant lysosomes are absent in S1. On the whole lysosomes are larger, but less numerous than after castration. Acid phosphatase is highly active. All changes are most evident in S3. At the end of pregnancy the proximal tubule cells are stressed considerably: Pinocytotic activity increases, and large numbers of cell organelles and many lipid vacuoles can be observed. The basal lamina in S1 and S2 becomes thicker. Lysosomes enlarge and increase in number in all segments; giant lysosomes are absent in S1; acid phosphatase activity is extremely high. The results indicate that sex hormones directly influence the regulation of the proximal tubule cell; moreover, they are indirectly important for the functioning of the kidney via changes in the whole organism.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)Dedicated to Prof. Dr. O. Bucher, Head of the Institute of Histology and Embryology of the University of Lausanne/Switzerland, on the occasion of his 65th birthday  相似文献   

17.
Summary The localization of several peptidases in the human kidney was investigated histochemically. The membrane-bound peptidases, aminopeptidase A (APA), aminopeptidase M, -glutamyltransferase (-GT) and dipeptidylpeptidase IV, were mainly demonstrable in the brush border of the proximal tubule. In addition, APA was found in the glomeruli, while -GT was found in the basal labyrinth of the proximal tubule. The lysosomal peptidases, dipeptidylpeptidase I and cathepsin B, were most strongly concentrated in the different-sized lysosomes of the proximal tubule, but they were also found in the small lysosomes of the distal tubule. Dipeptidylpeptidase II showed only a weak reaction in lysosomes of the proximal tubule. It is concluded that, in comparison with other previously studied species, the human kidney has a well-developed equipment with membrane-bound and lysosomal peptidases.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

18.
Summary Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed.Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.This investigation was supported by a grant from the Deutsche ForschungsgemeinschaftThis paper is dedicated in friendship to Professor Berta Scharrer (New York) on the occasion of her 70th birthday  相似文献   

19.
1. On subcellular fractionation of rat kidney homogenates by differential and density-gradient centrifugation, the bulk of the inositol 1:2-cyclic phosphate 2-phosphohydrolase activity remains with the alkaline phosphatase activity, suggesting localization in the brush borders of the proximal tubules. 2. Histochemical studies with a medium containing inositol 1:2-cyclic phosphate and Escherichia coli phosphomonoesterase show Gomori staining around the brush borders of the proximal tubules in the outer cortex only. 3. Serial sections across the kidney from cortex perimeter to papilla suggest that the inositol 1:2-cyclic phosphate 2-phosphohydrolase has a limited distribution along the proximal tubule of the nephron, probably being limited to the pars convoluta, whereas the alkaline phosphatase extends along the pars recta.  相似文献   

20.
The energetics and location of renal transport of acetoacetate, beta-hydroxybutyrate, alpha-hydroxybutyrate and gamma-hydroxybutyrate by luminal-membrane vesicles from either whole cortex or pars convoluta or pars recta of rabbit proximal tubule were studied. Addition of either acetoacetate or beta-hydroxybutyrate or its analogues to dye-membrane-vesicle suspensions in the presence of Na+ gradient (extravesicular greater than intravesicular) resulted in absorbance changes indicative of depolarizing event(s). Valinomycin enhanced the Na+-dependent uptake of monocarboxylic acids, provided a K+ gradient (intravesicular greater than extravesicular) was present. By contrast, Na+-dependent uptake of these compounds was nearly abolished by ionophores that permit Na+ to pass through the luminal-membrane via another channel, either electrogenically (e.g. gramicidin D) or electroneutrally (e.g. nigericin). These results established that the Na+-dependent transport of ketone bodies and analogues by luminal-membrane vesicles is an electrogenic process. Eadie-Hofstee analysis of saturation kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for these compounds. Tubular localization of the transport systems was studied by the use of vesicles derived from pars convoluta and pars recta. In pars recta uptake of all these compounds was mediated by means of a single high affinity common transport system. Uptake of these compounds by vesicles from pars convoluta was carried out via a relatively low affinity but common transport system. The physiological importance of the transport systems is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号