首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 micromol [U-13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain.  相似文献   

2.
The intervention of pyruvate in glucose metabolism was investigated during hypoxic stress in tumour cell cultures having respiratory capacities under normoxic conditions. Results obtained with nuclear magnetic resonance (NMR) spectroscopy showed that, under normoxic conditions, rat glioma C6 and human hepatoma Hep G2 cell cultures metabolised [(13)C(1)]glucose into lactate, alanine, glutamate and other less abundant metabolites, as already known from the literature. In the absence of pyruvate, during hypoxia or cyanide poisoning, both cell types dramatically decreased the label into glutamate and accumulated [(13)C(3)]glycerol-3-phosphate. The compound was further identified by 31P NMR spectroscopy. The accumulation of the label in glycerol-3-phosphate, however, did not occur when the cells were incubated in the presence of pyruvate. The fate of the latter, followed under normoxic conditions by incubating cells with [(13)C(3)]pyruvate and natural glucose, showed that the label was mainly found in alanine, lactate and glutamate. Anoxic conditions increased the label in lactate and reduced that of glutamate. The data show a metabolic effect of pyruvate during mitochondrial blockade due to severe lack of oxygen in tumour cell lines.  相似文献   

3.
1. The metabolism of glucose 6-phosphate in rat cerebral-cortex slices in vitro was compared with that of glucose. It was found that a glucose 6-phosphate concentration of 25mm was required to achieve maximal oxygen uptake rates and ATP concentrations, whereas only 2mm-glucose was required. 2. When 25mm-[U-(14)C]glucose 6-phosphate was used as substrate, the pattern of labelling of metabolites was found to be quantitatively and qualitatively similar to the pattern found with 10mm-[U-(14)C]glucose, except that incorporation into [(14)C]lactate was decreased, and significant amounts of [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate were formed. 3. Unlabelled glucose (10mm) caused a tenfold decrease in the incorporation of 25mm-[U-(14)C]glucose 6-phosphate into all metabolites except [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate. In contrast, unlabelled glucose 6-phosphate (25mm) had no effect on the metabolism of 10mm-[U-(14)C]glucose other than to increase markedly the incorporation into, and amount of, [(14)C]lactate, the specific radioactivity of this compound remaining approximately the same. 4. The effect of glucose 6-phosphate in increasing lactate formation from glucose was found to occur also with a number of other phosphate esters and with inorganic phosphate. Further investigation indicated that the effect was probably due to binding of medium calcium by the phosphate moiety, thereby de-inhibiting glucose uptake. 5. Incubations carried out in a high-phosphate high-potassium medium gave a pattern of metabolism similar to that found when slices were subjected to depolarizing conditions. Tris-buffered medium gave similar results to bicarbonate-buffered saline, except that it allowed much less lactate formation from glucose. 6. Part of the glucose formed from glucose 6-phosphate was extracellular and was produced at a rate of 12mumol/h per g of tissue in Krebs tris medium when glycolysis was blocked. The amount formed was much less when 25mm-P(i) or 26mm-HCO(3) (-) was present, the latter being in the absence of tris. 7. Glucose 6-phosphate also gave rise to an intracellular glucose pool, whereas no intracellular glucose was detectable when glucose was the substrate.  相似文献   

4.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

5.
The metabolism of [1-13C] glucose was followed in C6 rat glioma cells immobilized on a gel thread and in perchloric extracts of the same cells in culture. The results showed that the main metabolite of [1-13C] glucose is [3-13C] lactate. The effects of hypoxia were followed in the perchloric acid extracts of C6 cells. In normoxic conditions, the main metabolites produced by the cells were [3-'3C] lactate, [3-13C] alanine, [2-13C], [3-13C] and [4-13C] glutamate. Lactate newly synthesized from glucose appeared to be exported in the perfusion medium when living cells were immobilized in gel threads made of extracellular matrix. After 5 h of hypoxia, the lactate labelling measured in PCA cell extracts was increased that of glutamate decreased and the appearance of a spectral line at 66.01 ppm, identified as [1-13C] glycerol-3-phosphate, was observed. The data suggest that the synthesis of glycerol-3-phosphate in these cells might represent a sign of hypoxia.  相似文献   

6.
7.
The concentration and metabolism of the primary carbohydrate store in the brain, glycogen, is unknown in the conscious human brain. This study reports the first direct detection and measurement of glycogen metabolism in the human brain, which was achieved using localized 13C NMR spectroscopy. To enhance the NMR signal, the isotopic enrichment of the glucosyl moieties was increased by administration of 80 g of 99% enriched [1-13C]glucose in four subjects. 3 h after the start of the label administration, the 13C NMR signal of brain glycogen C1 was detected (0.36+/-0.07 micromol/g, mean+/-S.D., n=4). Based on the rate of 13C label incorporation into glycogen and the isotopic enrichment of plasma glucose, the flux through glycogen synthase was estimated at 0.17+/-0.05 micromol/(gh). This study establishes that brain glycogen can be measured in humans and indicates that its metabolism is very slow in the conscious human. The noninvasive detection of human brain glycogen opens the prospect of understanding the role and function of this important energy reserve under various physiological and pathophysiological conditions.  相似文献   

8.
Changes in splanchnic metabolism in pigs were assessed after meals containing slowly or rapidly digested starch. The pigs were fed a mixed meal containing a "slow" native (n = 5) or a "rapid" pregelatinized (n = 5) cornstarch naturally enriched with [(13)C]glucose. Absorption of [(13)C]glucose was monitored by the arteriovenous difference technique, and infusion of D-[6, 6-(2)H(2)]glucose in the jugular vein was used to calculate the systemic appearance of [(13)C]glucose. Arteriovenous balance data obtained during a 12-h study period showed that the fraction of ingested glucose equivalent appearing as glucose in the portal vein was 49.7 +/- 7.2% for the slow starch and 48.2 +/- 7.5% for the rapid starch (P = 0.86). These values, corrected for the gut extraction of circulating [(13)C]glucose, became 66.4 +/- 5.6 and 65. 3 +/- 5.6%, respectively (P = 0.35). Isotope dilution data indicated that systemic appearance of exogenous [(13)C]glucose represented 62. 9 +/- 7.6 and 67.4 +/- 3.0% of the oral load for slow and rapid starch, respectively (P = 0.68). Arterial glucose utilization by the gut increased from 7.3 +/- 0.9 micromol x kg(-1) x min(-1) before the meal to 8.5 +/- 1.6 micromol x kg(-1) x min(-1) during absorption, independently of the nature of the starch. Thus splanchnic glucose metabolism was unaffected by the nature of starch ingested.  相似文献   

9.
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.  相似文献   

10.
1. The production of pyruvate, glycerol and glycerol-3-phosphate by intact and digitonin-permeabilized Trypanosoma brucei brucei has been studied with glucose or the glycolytic intermediates as substrates. 2. Under aerobic conditions hexosephosphates gave maximal glycolysis in the presence of 40-60 micrograms digitonin/10(8) trypanosomes while the triosephosphates gave it at 20-30 micrograms digitonin/10(8) trypanosomes. 3. In the presence of salicylhydroxamic acid, and the glycolytic intermediates, permeabilized trypanosomes produced equimolar amounts of pyruvate and glycerol-3-phosphate and no glycerol. Under the same conditions, glucose catabolism produced glycerol in addition to pyruvated and glycerol-3-phosphate. 4. In the presence of salicylhydroxamic acid and ATP or ADP intact trypanosomes produced equimolar amounts of pyruvate and (glycerol plus glycerol-3-phosphate) with glucose as substrate. 5. A carrier for ATP and ADP at the glycosomal membrane is implicated. 6. It is apparent that glycerol formation is regulated by the ATP/ADP ratio and that it needs intact glycosomal membrane and the presence of glucose.  相似文献   

11.
Vigeolas H  Geigenberger P 《Planta》2004,219(5):827-835
Glycerol-3-phosphate (glycerol-3P) is a primary substrate for triacylglycerol synthesis. In the present study, changes in the levels of glycerol-3P during rape (Brassica napus L.) seed development and the influence of manipulating glycerol-3P levels on triacylglycerol synthesis were investigated. (i) Glycerol-3P levels were high in young seeds and decreased during seed development at 30 and 40 days after flowering (DAF), when lipid accumulation was maximal. (ii) To manipulate glycerol-3P levels in planta, various concentrations of glycerol were injected directly into 30-DAF seeds, which remained otherwise intact within their siliques and attached to the plant. Injection of 0–10 nmol glycerol led to a progressive increase in seed glycerol-3P levels within 28 h. (iii). Increased levels of glycerol-3P were accompanied by an increase in the flux of injected [14C]sucrose into total lipids and triacylglycerol, whereas fluxes to organic acids, amino acids, starch, protein and cell walls were not affected. (iv) When [14C]acetate was injected into seeds, label incorporation into total lipids and triacylglycerol increased progressively with increasing glycerol-3P levels. (v) There was a strong correlation between the level of glycerol-3P and the incorporation of injected [14C]acetate and [14C]sucrose into triacylglycerol. (v) The results provide evidence that the prevailing levels of glycerol-3P co-limit triacylglycerol synthesis in developing rape seeds.Abbreviations DAF Days after flowering - DAG Diacylglycerol - G3PAT Glycerol-3-phosphate acyltransferase - Glycerol-3P Glycerol-3-phosphate - PA Phosphatidic acid - PC Phosphatidylcholine - TAG Triacylglycerol,  相似文献   

12.
Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg2? or Mn2? for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg?1 with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and shown to significantly increase GPP activity.  相似文献   

13.
We propose the following scheme for cerebral uptake and overall metabolism of glucose in vivo: that brain selects from two pools of glucose anomers in arterial blood, that it takes up excess glucose, that glucose enters the brain tissue as glucose-6-phosphate through the actions of mutarotase and hexokinase, that some glucose-6-phosphate becomes metabolized to CO2 and some becomes incorporated into brain carbon pools, and that excess glucose-6-phosphate leaves brain through glucose-6-phosphatase and mutarotase activities. This results from our observations in arterio-venous studies for the determination of cerebral metabolism in humans in vivo that the cerebral uptake of [14C]glucose often appeared to differ from that of unlabeled glucose. With rapidly falling arterial radioactivity, unlabeled glucose uptake was more than [14C]glucose. With rising arterial radioactivity, [14C]glucose extraction extraction exceeded unlabeled glucose. Studies with [14C]glucose-6-phosphate suggested that glucose-6-phosphatase in brain removes excess substrate by dephosphorylation. However, when arterial [14C]glucose increased slowly, [14C]glucose uptake varied considerably and the data resembled human cerebral metabolism of glucose anomers. An experiment employing [13C]glucose and NMR provided further support for our proposed scheme.  相似文献   

14.
1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2'-O-dibutyryl 3':5'-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [(14)C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of (14)C in various products after 2h of incubation. Fluxes of [(14)C]acetate, [(14)C]pyruvate or [(14)C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolasextriose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD(+)]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the ;malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.  相似文献   

15.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

16.
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that d-arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.  相似文献   

17.
The treatment of rats for 4 h with 6-aminonicotinamide (60 mg kg-1) resulted in an 180-fold increase in the concentration of 6-phosphogluconate in their brains; glucose increased 2.6-fold and glucose 6-phosphate, 1.7-fold. Moreover, lactate decreased by 20%, glutamate by 8% and gamma-aminobutyrate by 12%, and aspartate increased by 10%. No significant changes were found in glutamine and citrate. In blood, 6-phosphogluconate increased 5-fold; glucose, 1.4-fold and glucose 6-phosphate, 1.8-fold. The metabolism of glucose in the rat brain, via both the Embden-Meyerhof pathway and the hexose monophosphate shunt, was investigated by injecting [U-14C]glucose or [2-14C]glucose, and that via the hexose monophosphate shunt alone by injecting [3,4-14C]glucose. The total radioactive yield of amino acids in the rat brain was 5.63 mumol at 20 min after injection of [U-14C]glucose, or 5.82 mumol after injection of [2-14C]glucose; by contrast, it was 0.62 mumol after injection of [3,4-14C]glucose. The treatment of rats with 6-aminonicotinamide showed significant decreases in these values, owing to decreases in the radioactive yields of glutamate, glutamine, aspartate, gamma-aminobutyrate, and alanine+glycine+serine. Glutamate isolated from the brain contained approximately 43% of its radioactivity in carbon 1 after injection of [3,4-14C]glucose, in contrast to 13% and 18% after injection of [U-14C]glucose and [2-14C]glucose, respectively, in both the control and treated rats. The calculations based on these findings showed that approximately 69% of the 14C-labelled glutamate was formed from [14C]acetyl coenzyme A (acetyl CoA) and the residual 31% by 14CO2 fixation of pyruvate after injection of [3,4-14C]glucose in both control and treated rats. The results gave direct evidence that glutamate and gamma-aminobutyrate in the brain were formed by metabolism of glucose via the hexose monophosphate shunt as well as via the Embden-Meyerhof pathway. From the radioactive yields of glutamate formed via [14C]acetyl CoA it was estimated that approximately 7.8% of the total glucose utilized was channelled via the hexose monophosphate shunt. Assuming that [14C]glutamate formed by carbon-dioxide fixation of pyruvate was also dependent on the metabolism of glucose through the hexose monophosphate shunt, the estimated value was approximately 9.5% of the total glucose converted into glutamate. The results of the present investigation, taken in conjunction with other findings, suggest that the utilization of glucose via the hexose monophosphate shunt is functionally important in the rat brain.  相似文献   

18.
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.  相似文献   

19.
The utilization of blood glycerol and glucose as precursors for intramuscular triglyceride synthesis was examined in rats using an intravenous infusion of [2-(14)C]glycerol and [6-(3)H]glucose or [6-(14)C]glucose. In 24-h fasted rats, more glycerol than glucose was incorporated into intramuscular triglyceride glycerol in soleus (69 +/- 23 versus 4 +/- 1 nmol/micromol triglyceride/h, respectively, p = 0.02 glycerol versus glucose) and in gastrocnemius (25 +/- 5 versus 9 +/- 2 nmol/micromol triglyceride/h, respectively, p = 0.02). Blood glucose was utilized more than blood glycerol for triglyceride glycerol synthesis in quadriceps. In fed rats, the blood glycerol incorporation rates (4 +/- 2, 8 +/- 3, and 9 +/- 3 nmol/micromol triglyceride/h) were similar (p > 0.3) to those of glucose (5 +/- 2, 8 +/- 2, and 5 +/- 2 nmol/micromol triglyceride/h for quadriceps, gastrocnemius, and soleus muscle, respectively). Glucose incorporation into intramuscular triglycerides was less with [6-(3)H]glucose than with [6-(14)C]glucose, suggesting an indirect pathway for glucose carbon entry into muscle triglyceride. The isotopic equilibrium between plasma and intramuscular free glycerol ([U-(13)C]glycerol) was complete in quadriceps and gastrocnemius, but not soleus, within 2 h after beginning the tracer infusion. We conclude that blood glycerol is a direct and important precursor for muscle triglyceride synthesis in rats, confirming the presence of functionally important amounts of glycerol kinase in skeletal muscle.  相似文献   

20.
Glycerol, one of the most important by-products of alcoholic fermentation, has positive effects on the sensory properties of fermented beverages. It was recently shown that the most direct approach for increasing glycerol formation is to overexpress GPD1, which encodes the glycerol-3-phosphate dehydrogenase (GPDH) isoform Gpd1p. We aimed to identify other steps in glycerol synthesis or transport that limit glycerol flux during glucose fermentation. We showed that the overexpression of GPD2, encoding the other isoform of glycerol-3-phosphate dehydrogenase (Gpd2p), is equally as effective as the overexpression of GPD1 in increasing glycerol production (3.3-fold increase compared to the wild-type strain) and has similar effects on yeast metabolism. In contrast, overexpression of GPP1, encoding glycerol 3-phosphatase (Gpp1p), did not enhance glycerol production. Strains that simultaneously overexpress GPD1 and GPP1 did not produce higher amounts of glycerol than a GPD1-overexpressing strain. These results demonstrate that GPDH, but not the glycerol 3-phosphatase, is rate-limiting for glycerol production. The channel protein Fps1p mediates glycerol export. It has recently been shown that mutants lacking a region in the N-terminal domain of Fps1p constitutively release glycerol. We showed that cells producing truncated Fps1p constructs during glucose fermentation compensate for glycerol loss by increasing glycerol production. Interestingly, the strain with a deregulated Fps1 glycerol channel had a different phenotype to the strain overexpressing GPD genes and showed poor growth during fermentation. Overexpression of GPD1 in this strain increased the amount of glycerol produced but led to a pronounced growth defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号