首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The promoter of the mouse inducible nitric oxide synthase (iNOS) has a putative octamer motif (ATGCAAAA) which exists 24 bp upstream from the TATA box and is mismatched at a single residue from the consensus octamer motif. To examine whether this site is involved in iNOS expression, we constructed various deletions and site-directed mutants of the iNOS promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene, transfected the constructs into RAW 264.7 macrophages, and stimulated the cells with interferon-gamma (IFN-gamma) and/or lipopolysaccharide (LPS). CAT activity was not induced by LPS in constructs containing only the octamer motif (-71 to +82), but was induced with constructs containing the octamer motif and the upstream sequences of the NF-kappaB site (-91 to +82). However, a site-directed mutation of the octamer motif in the context of the -91 to +82 promoter construct or an extended promoter construct (-1542 to +82) abolished IFN-gamma and/or LPS-induced CAT activity. Similar results were obtained from site-directed mutants at either the NF-kappaB site or both the NF-kappaB site and octamer motif in these two constructs. In addition, we demonstrated that the conversion of the iNOS octamer motif into a consensus sequence increased CAT activity. Electrophoretic mobility shift assay (EMSA) performed with the NF-kappaB site or the octamer motif-containing oligonucleotide probe revealed that NF-kappaB binding was induced by LPS treatment, while the Oct-1 binding was constitutive. Competition assays performed with octamer-related oligonucleotide competitors derived from the immunoglobulin-kappaB or SV40 promoter confirmed the identity of the iNOS promoter sequence as being a Oct-1 binding site. EMSA carried out using a probe containing both the NF-kappaB site and the octamer motif identified two LPS-induced complexes. Competition assays with each NF-kappaB site or octamer motif competitor revealed that NF-kappaB and Oct-1 were present in these two complexes. These data suggest that, besides the NF-kappaB site, the octamer motif is essential for the maximal expression of the iNOS gene in murine macrophages, and the direct interaction of Oct-1 and NF-kappaB is important for the regulation of this gene.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
《Gene》1997,188(2):253-260
Interleukin-4 (IL-4) is a pleiotropic immunomodulatory cytokine secreted by T helper 2 cells. The IL-4 promoter contains multiple sites with DNA sequences homologous to the IL-2 NF-AT binding site. One of these sites—the P2 site—located between –173 and –150 was previously found to be flanked by two octamer-like motifs. NF-ATp/c and octamer proteins were suggested to bind to this region and to cooperatively activate the promoter activity (Chuvpilo et al., 1993). To precisely analyze the P2-binding factors we used antibodies against NF-ATp, NF-ATc, Fos, Jun, Oct-1 and Oct-2 in EMSA. We show here that nuclear extracts from T-cells form two P2-binding complexes—a PMA/ionomycin-inducible and a constitutive one. The PMA/ionomycin-inducible complex contains NF-ATp/c, Fos and Jun. No octamer binding factors could be detected in either of the two complexes. Analysis of the precise DNA contact points of the two complexes showed that both complexes are formed in the center of the NF-AT consensus site. No DNA contact points could be detected in the octamer-like motif site. Furthermore, purified recombinant POU domains of Oct-1 and Oct-2 failed to bind to the P2 site, suggesting that this site is not an independent octamer-binding site. Therefore, the DNA sequence at –173 to –150 of the IL-4 promoter is a binding site for NF-ATp/c and AP-1. Octamer proteins are unlikely to cooperate with NF-ATp/c at this site.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

15.
16.
17.
18.
POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.  相似文献   

19.
The ubiquitously expressed mammalian POU-domain protein Oct-1 specifically recognizes two classes of cis-acting regulatory elements that bear little sequence similarity, the octamer motif ATGCAAAT and the TAATGARAT motif. The related pituitary-specific POU protein Pit-1 also recognizes these two motifs but, unlike Oct-1, binds preferentially to the TAATGARAT motif. Yet in our assay, Pit-1 still binds octamer elements better than does the octamer motif-binding protein Oct-3. The POU domain is responsible for recognizing these diverse regulatory sequences through multiple DNA contacts that include the two POU subdomains, the POU-specific region, and the POU homeodomain. The DNA-binding properties of 10 chimeric POU domains, in which different POU-domain segments are derived from either Oct-1 or Pit-1, reveal a high degree of structural plasticity; these hybrid proteins all bind DNA well and frequently bind particular sites better than does either of the parental POU domains. In these chimeric POU domains, the POU-specific A and B boxes and the hypervariable POU linker can influence DNA-binding specificity. The surprising result is that the influence a particular segment has on DNA-binding specificity can be greatly affected by the origin of other segments of the POU domain and the sequence of the binding site. Thus, the broad but selective DNA-binding specificity of Oct-1 is conferred both by multiple DNA contacts and by dynamic interactions within the DNA-bound POU domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号