首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.  相似文献   

2.
Coupling proteins (CPs) are present in type IV secretion systems of plant, animal, and human pathogens and are essential for DNA transfer in bacterial conjugation systems. CPs connect the DNA-processing machinery to the mating pair-forming transfer apparatus. In this report we present in vitro and in vivo data that demonstrate specific binding of CP TraD of the IncFII R1 plasmid transfer system to relaxosomal protein TraM. With overlay assays and enzyme-linked immunosorbent assays we showed that a truncated version of TraD, termed TraD11 (DeltaN155), interacted strongly with TraM. The apparent TraD11-TraM association constant was determined to be 2.6 x 10(7) liters/mol. Electrophoretic mobility shift assays showed that this variant of TraD also strongly bound to TraM when it was in complex with its target DNA. When 38 amino acids were additionally removed from the C terminus of TraD, no binding to TraM was observed. TraD15, comprising the 38 amino-acid-long C terminus of TraD, bound to TraM, indicating that the main TraM interaction domain resides in these 38 amino acids of TraD. TraD15 exerted a dominant negative effect on DNA transfer but not on phage infection by pilus-specific phage R17, indicating that TraM-TraD interaction is important for conjugative DNA transfer but not for phage infection. We also observed that TraD encoded by the closely related F factor bound to TraM encoded by the R1 plasmid. Our results thus provide evidence that substrate selection within the IncF plasmid group is based on TraM's capability to select the correct DNA molecule for transport and not on substrate selection by the CP.  相似文献   

3.
F plasmid-mediated bacterial conjugation requires interactions between a relaxosome component, TraM, and the coupling protein TraD, a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. Here we present the crystal structure of the C-terminal tail of TraD bound to the TraM tetramerization domain, the first structural evidence of relaxosome-coupling protein interactions. The structure reveals the TraD C-terminal peptide bound to each of four symmetry-related grooves on the surface of the TraM tetramer. Extensive protein-protein interactions were observed between the two proteins. Mutational analysis indicates that these interactions are specific and required for efficient F conjugation in vivo. Our results suggest that specific interactions between the C-terminal tail of TraD and the TraM tetramerization domain might lead to more generalized interactions that stabilize the relaxosome-coupling protein complex in preparation for conjugative DNA transfer.  相似文献   

4.
TraG-like proteins are potential NTP hydrolases (NTPases) that are essential for DNA transfer in bacterial conjugation. They are thought to mediate interactions between the DNA-processing (Dtr) and the mating pair formation (Mpf) systems. TraG-like proteins also function as essential components of type IV secretion systems of several bacterial pathogens such as Helicobacter pylori. Here we present the biochemical characterization of three members of the family of TraG-like proteins, TraG (RP4), TraD (F), and HP0524 (H. pylori). These proteins were found to have a pronounced tendency to form oligomers and were shown to bind DNA without sequence specificity. Standard NTPase assays indicated that these TraG-like proteins do not possess postulated NTP-hydrolyzing activity. Surface plasmon resonance was used to demonstrate an interaction between TraG and relaxase TraI of RP4. Topology analysis of TraG revealed that TraG is a transmembrane protein with cytosolic N and C termini and a short periplasmic domain close to the N terminus. We predict that multimeric inner membrane protein TraG forms a pore. A model suggesting that the relaxosome binds to the TraG pore via TraG-DNA and TraG-TraI interactions is presented.  相似文献   

5.
6.
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine.  相似文献   

7.
In preparation for transfer conjugative type IV secretion systems (T4SS) produce a nucleoprotein adduct containing a relaxase enzyme covalently linked to the 5' end of single-stranded plasmid DNA. The bound relaxase is expected to present features necessary for selective recognition by the type IV coupling protein (T4CP), which controls substrate entry to the envelope spanning secretion machinery. We prove that the IncF plasmid R1 relaxase TraI is translocated to the recipient cells. Using a Cre recombinase assay (CRAfT) we mapped two internally positioned translocation signals (TS) on F-like TraI proteins that independently mediate efficient recognition and secretion. Tertiary structure predictions for the TS matched best helicase RecD2 from Deinococcus radiodurans. The TS is widely conserved in MOB(F) and MOB(Q) families of relaxases. Structure/function relationships within the TS were identified by mutation. A key residue in specific recognition by T4CP TraD was revealed by a fidelity switch phenotype for an F to plasmid R1 exchange L626H mutation. Finally, we show that physical linkage of the relaxase catalytic domain to a TraI TS is necessary for efficient conjugative transfer.  相似文献   

8.
随着高等生物中十几个新的参与囊泡运输的 Hermansky-Pudlak 综合征(HPS)蛋白质的发现, 认为可能存在一类新的囊泡运输通路。该通路主要由新近鉴定的 3 个被称为溶酶体相关细胞器生物发生复合体(BLOC)所组成, 被分别命名为BLOC-1、BLOC-2 和 BLOC-3。越来越多的证据表明这些复合体与以前认识较清楚的 AP3 和 HOPS 复合体共同在胞内体运输中起重要作用。这些复合体之间的相互作用构成了以胞内体和细胞骨架为连接纽带的参与蛋白质运输的复杂网络。该网络中的每个节点的相互作用可区分为复合体内和复合体外相互作用两大类。复合体之间的联系可以是来自不同复合体亚基间的直接相互作用, 也可以通过耦联的节点联结不同的复合体。解析这一复杂网络有助于进一步了解参与蛋白质和膜运输这一动态而精细网络的结构与功能。一旦该网络结构得到破坏, 则可能导致如 HPS 这类囊泡运输或细胞器发生障碍性疾病。  相似文献   

9.
Lee SP  O'Dowd BF  George SR 《Life sciences》2003,74(2-3):173-180
G protein-coupled receptors (GPCRs) form homo-oligomeric and hetero-oligomeric complexes. This understanding has prompted a re-evaluation of many aspects of GPCR biology, however the concept of receptor complexes has not been fully integrated into the current thinking about GPCR structure and function. Nevertheless, receptor oligomerization is a pivotal aspect of the structure and function of GPCRs that has been shown to have implications for receptor trafficking, signaling, and pharmacology and more intricate models for understanding the physiological roles of these receptors are emerging. Here, we summarize some of the advances made in understanding the structural basis and the functional roles of homo- and hetero- oligomerization in this important group of receptors. Although this discussion focuses primarily on the dopamine receptors, particularly the D2 dopamine receptor, and the opioid and serotonin receptors, we discuss the principles governing the oligomerization of all rhodopsin-like GPCRs and potentially of the entire superfamily of these receptors.  相似文献   

10.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

11.
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. VirB4 was suggested to be an ATPase involved in energizing pilus assembly and substrate transport. However, conflicting experimental evidence concerning VirB4 ATP hydrolase activity was reported. Here, we demonstrate that TrwK is able to hydrolyze ATP in vitro in the absence of its potential macromolecular substrates and other T4SS components. The kinetic parameters of its ATPase activity have been characterized. The TrwK oligomerization state was investigated by analytical ultracentrifugation and electron microscopy, and its effects on ATPase activity were analyzed. The results suggest that the hexameric form of TrwK is the catalytically active state, much like the structurally related protein TrwB, the conjugative coupling protein.  相似文献   

12.
Lu J  Frost LS 《Journal of bacteriology》2005,187(14):4767-4773
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.  相似文献   

13.
Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.  相似文献   

14.
Oligomeric interactions of TGF-β and BMP receptors   总被引:1,自引:0,他引:1  
Ehrlich M  Gutman O  Knaus P  Henis YI 《FEBS letters》2012,586(14):1885-1896
  相似文献   

15.
A G Lau  R A Hall 《Biochemistry》2001,40(29):8572-8580
PDZ domains bind to the carboxyl-termini of target proteins, and some PDZ domains are capable of oligomerization to facilitate the formation of intracellular signaling complexes. The Na(+)/H(+) exchanger regulatory factor (NHERF-1; also called "EBP50") and its relative NHERF-2 (also called "E3KARP", "SIP-1", and "TKA-1") both have two PDZ domains. We report here that the PDZ domains of NHERF-1 and NHERF-2 bind specifically to each other but not to other PDZ domains. Purified NHERF-2 PDZ domains associate with each other robustly in the absence of any associated proteins, but purified NHERF-1 PDZ domains associate with each other only weakly when examined alone. The oligomerization of the NHERF-1 PDZ domains is greatly facilitated when they are bound with carboxyl-terminal ligands, such as the carboxyl-termini of the beta(2)-adrenergic receptor or the platelet-derived growth factor receptor. Oligomerization of full-length NHERF-1 is also enhanced by mutation of serine 289 to aspartate (S289D), which mimics the phosphorylated form of NHERF-1. Co-immunoprecipitation experiments with differentially tagged versions of the NHERF proteins reveal that NHERF-1 and NHERF-2 form homo- and hetero-oligomers in a cellular context. A point-mutated version of NHERF-1 (S289A), which cannot be phosphorylated on serine 289, exhibits a reduced capacity for co-immunoprecipitation from cells. These studies reveal that both NHERF-1 and NHERF-2 can oligomerize, which may facilitate NHERF-mediated formation of cellular signaling complexes. These studies furthermore reveal that oligomerization of NHERF-1, but not NHERF-2, is highly regulated by association with other proteins and by phosphorylation.  相似文献   

16.
MLIV (mucolipidosis type?IV) is a neurodegenerative lysosomal storage disorder caused by mutations in MCOLN1, a gene that encodes TRPML1 (mucolipin-1), a member of the TRPML (transient receptor potential mucolipin) cation channels. Two additional homologues are TRPML2 and TRPML3 comprising the TRPML subgroup in the TRP superfamily. The three proteins play apparently key roles along the endocytosis process, and thus their cellular localization varies among the different group members. Thus TRPML1 is localized exclusively to late endosomes and lysosomes, TRPML2 is primarily located in the recycling clathrin-independent GPI (glycosylphosphatidylinositol)-anchored proteins and early endosomes, and TRPML3 is primarily located in early endosomes. Apparently, all three proteins' main physiological function underlies Ca(2+) channelling, regulating the endocytosis process. Recent findings also indicate that the three TRPML proteins form heteromeric complexes at least in some of their cellular content. The physiological role of these complexes in lysosomal function remains to be elucidated, as well as their effect on the pathophysiology of MLIV. Another open question is whether any one of the TRPMLs bears additional function in channel activity.  相似文献   

17.
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.  相似文献   

18.
Many membrane proteins are functional as stable oligomers. An understanding of the conditions that elicit and enhance oligomerization is important in many therapeutics. In this regard, protein–protein and protein–lipid interactions play crucial roles in the assembly and stability of oligomeric complexes. Recent years have seen a rapid increase in the mechanistic information on the importance of cytoplasmic termini in determining subunit assembly and stability of oligomeric complexes. In addition, the role of specific protein–lipid interaction between anionic phospholipids and “hot spots” on the protein surface has also become evident in stabilizing oligomeric assemblies. This review focuses on several contemporary developments of membrane proteins that stabilize oligomers by taking the potassium channel KcsA as an exemplary ion channel.  相似文献   

19.
Type IV secretion systems (T4SSs) mediate both protein and ssDNA secretion from a wide range of bacteria into virtually any cell type or into the milieu. It is this versatility that confers on them the ability to participate in many processes of bacterial life that imply communication with their environment. Type IV secretion systems are involved in horizontal DNA transfer to other bacteria and to plant cells, in DNA uptake from the milieu, in toxin secretion into the milieu, and in the injection of virulence factors into the eukaryotic host cell in a number of mammalian and plant pathogens. Recently, a EuroConference addressed the different aspects of the biology of these transmembrane multiprotein complexes, from the crystal structure of the individual components to the modification that the secreted substrates induce in the recipient cell. Significant progress has been made in the understanding of the molecular architecture and mechanism of secretion. The analysis of protein-protein interactions confirms the role of coupling proteins as substrate recruiters for the transporter. The VirB10 component of the complex has come up as a strong candidate for signal transducer. The wide range of effects on the recipient suggests that many effector proteins are secreted. New effector proteins are being identified for both plant and animal pathogens, as are their targets within the host cells. New T4SS members are being identified that perform novel roles, beyond DNA transfer and virulence, such as establishment of symbiotic processes. Our current knowledge of the Biology of Type IV Secretion Processes increases our ability to exploit them as biotechnological tools or to use them as new targets for inhibitors that could constitute a new generation of antimicrobials in the near future.  相似文献   

20.
G protein-coupled receptors are dynamically regulated. Such regulation is frequently associated with covalent posttranslational modifications, such as phosphorylation, and with regulatory elements. G protein-coupled receptor kinases and casein kinase 1alpha play key roles in agonist-dependent receptor phosphorylations. Cross-talk between different receptors frequently involves second messenger-activated proteins, such as protein kinase C and protein kinase A. There is some evidence indicating that such kinases may not only turn off receptors but also switch their coupling to different G proteins. Receptor tyrosine kinases may phosphorylate and regulate G protein-coupled receptors and recent evidence indicates that other kinases, such as Akt/protein kinase B and phosphoinositide 3-kinase, may participate in such regulations as integrators of signalling.Recent approaches have shed new light on G protein-coupled receptor interactions that provide novel mechanisms of action and regulation. G protein-coupled receptor activities go beyond G proteins and receptors can be partners of exquisitely assembled signalling complexes through molecular bridges composed of multidomain proteins. The possibilities of interaction increase enormously through the diversity of structural and functional domains present in complex proteins, many of them just known as predicted sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号