首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The content of liver cytosolic proteins was studied in mice subjected to protein depletion followed by refeeding with a normal diet. Depletion elicited either the accumulation or the decrease of several polypeptides, being the early increase of a Mr 36 000 polypeptide the most pronounced change observed. The refeeding with a normal diet for 2 days caused a return of the cytosol protein composition to that of normally fed animals. The Mr 36 000 polypeptide was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Its molecular weight, the sequence of its first twenty amino acid residues, its amino acid composition and its antigenic properties were found to be similar with those of GAPDH from different mammalian cells. During the first 2 days of protein depletion, both the GAPDH polypeptide content and activity increased. Thereafter, the enzymatic activity of GAPDH decreased, whereas GAPDH protein mass decreased in a lesser extent. The accumulation of GAPDH and other particular polypeptides in the cytosols of protein depleted mice was associated with an increased synthesis. The refeeding with a normal diet caused an immediate return to the synthesis pattern of normal livers.  相似文献   

3.
2-deoxy-D-glucose (2-DG), the unmetabolizable analogue of glucose induces a series of metabolic, hormonal and behavioral responses, causing cellular glucoprivation. According to in vitro studies, 2-DG inhibits phosphofructokinase in cultured human cells. The present investigations deal with changes in the cytosolic glucose-6-phosphate dehydrogenase activity following in vivo 2-DG administration. A single dose of 2-DG (600 mg/kg) has no influence on the activity of glucose-6-phosphate dehydrogenase in the cytosol of liver, heart and skeletal muscle of the rat. The concomitant increase in serum glucose, lactate and FFA concentrations observed in the study indicates indirectly a stimulation of adrenergic system. After three days of successive administration of 2-DG to rats, dehydrogenase activity decreased in the liver by approx 57% and in the skeletal muscle by approx 82% in comparison with control animals. Moreover the in vivo effect of 2-DG was found to be fully reversible, probably when the total amount of the inhibitor was excreted.  相似文献   

4.
5.
Recent work (Hizi and Yagil [1974] Eur. J. Biochem. 45: 211–221, and Kelly et. al. [1975] Fed. Proc. 34: 881) suggests that the marked increase in rat liver glucose-6-phosphate dehydrogenase activity which is observed upon feeding an animal a high carbohydrate diet does not involve an increase in the total amount of enzyme present. In contrast, the data presented herein involving immunological titrations of rat liver glucose-6-phosphate dehydrogenase indicates that the increase in enzyme activity resulting from feeding a high carbohydrate diet does involve an increase in the total amount of enzyme present.  相似文献   

6.
Acetoacetate was the sole ketone body formed when livers from starved rats were perfused with minimal concentrations of non-esterified fatty acid. Absence of 3-hydroxybutyrate was related to a low substrate potential, which caused a more oxidized redox state and a decreased [ATP]/[ADP] ratio. Only under conditions of comparable non-esterified fatty acid uptake was lipoprotein triacylglycerol production inversely related to ketogenesis.  相似文献   

7.
8.
9.
1. The influence of ethanol on the metabolism of livers from fed and starved rats has been studied in liver-perfusion experiments. Results have been obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in livers from starved rats than in livers from fed rats. Ethanol had no effect on the oxygen consumption of either type of liver. After the addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely, the change being faster in livers from starved rats. 3. With livers from fed rats glucose was released from the liver into the perfusion medium. This release was slightly greater when ethanol was present. With livers from starved rats no release of glucose was observed, and when ethanol was added a marked uptake of glucose from the medium was found. A simultaneous release of glycolytic end products, lactate and pyruvate, into the medium occurred. 4. Acetate was the main metabolite accumulating in the perfusion medium when ethanol was oxidized. With livers from starved rats a slightly increased formation of ketone bodies was found when ethanol was present. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 10 to 87 with livers from fed rats and from 20 to 171 with livers from starved rats when the livers were perfused with ethanol in the medium. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 0·8 to 7·6 with livers from fed rats and from 1·0 to 9·5 with livers from starved rats when ethanol was added to the medium. 6. The effects of ethanol are discussed and related to changes in the redox state of the liver that produce new conditions for some metabolic pathways.  相似文献   

10.
Isozymes of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GPD, EC 1.2.1.13) from Chenopodium rubrum were separated using inverse discontinuous ammonium sulphate gradient solubilization. Leaves were extracted at the 9th h of light and the 9th h of darkness of a 12 h light/12 h dark cycle. The ratio of "NADP-GPD I" to "NADP-GPD II" varied with the light/dark cycle. However, the "light" isozyme pattern could be obtained from "dark" plants by including NADP + or NAD + kinase in the extraction buffer. Similarly, the "dark" isozyme pattern was produced in "light" plants extracted in the presence of NAD+. Pyridine nucleotides had no effect on the separated, purified isozymes. It is concluded that differential binding of the isozymes at the moment of extraction to pelletable material in the crude extract determines the isozyme pattern, and that this binding is regulated by the pyridine nucleotide ratio.  相似文献   

11.
12.
1. The effect of phenobarbitone on the rate of protein synthesis and on the sedimentation patterns of various liver subcellular fractions containing ribosomes was studied in rats. 2. Phenobarbitone treatment increased the incorporation of [114C]leucine into protein by all preparations, provided they had not been subjected to preliminary treatment with Sephadex G-25. The phenobarbitone-induced effect on incorporation was associated with a gain in liver weight and a higher degree of polyribosomal aggregation. 3. Preparations that were treated with Sephadex G-25 incorporated more radioactivity into protein, but did not show the response to phenobarbitone treatment. 4. When the influence of starvation and phenobarbitone was studied separately on membrane-bound and membrane-free polyribosomes, it was shown that whereas both classes of polyribosomes were affected by starvation, apparently only the former class was susceptible to phenobarbitone stimulation of protein synthesis. 5. The decreased capacity for protein synthesis of polyribosomes from starved rats was independent of their association with the membranes of the endoplasmic reticulum, but resulted from polyribosomal disaggregation, from an intrinsic defect of the polyribosomes themselves and from changes in composition of the cell cap. 6. The results are discussed in relation to the problem of the control of protein biosynthesis and of the functional separation of membrane-bound and membrane-free polyribosomes.  相似文献   

13.
14.
15.
16.
A newly developed specific radioimmunoassay was used to quantify phosphofructokinase protein directly and independently of assayable activity in liver and kidney cytosol of normal fed, starved and alloxan-diabetic rats. In the fed state, liver phosphofructokinase concentration was 0.096 microM and the kidney enzyme was 0.086 microM (mumol/kg of tissue). In the starved state (24h), liver and kidney phosphofructokinase concentrations decreased by 30%. Prolonged starvation up to 72h did not further decrease enzyme concentration. In liver, total enzyme content during starvation declined by more than 50%, secondary also to a decrease in liver weight. In the alloxan-diabetic rats, there was a 22% decrease in enzyme protein concentration in liver and kidney. Total enzyme content per liver actually decreased much more (46%), because diabetes also resulted in a decrease in liver size. In conjunction with assayable activity measurements, the results of the radioimmunoassay allowed us to calculate the apparent specific activity of the enzyme. The specific activity of the kidney enzyme was 2-3 times that of the liver. Little or no change in specific activity of the liver or kidney enzyme occurred as a result of starvation or chemically induced diabetes. Tissue enzyme concentrations of phosphofructokinase unequivocally reconcile the ultimate results of changing rates of synthesis and degradation and are useful data in the design of spectrophotometric, kinetic, aggregation-disaggregation and other studies.  相似文献   

17.
Summary The lower Vmax of 6PGDH with respect to G6PDH and its higher sensitivity to inhibition by NADPH, suggest the existence of an imbalance between the two dehydrogenases of the pentose phosphate pathway in rat liver. Possible modulators of these activities, particularly in relation with the inhibition by NADPH in physiological conditions, have been investigated. The results suggest that in both cases the inhibition by NADPH is strictly isosteric and that the relative affinities for the reduced and oxidized forms of the pyridine nucleotide are unaffected by glutathion, the intermediates of the pentose phosphate shunt or some divalent ions.Abbreviations G6PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - 6PGDH 6-phosphogluconate dehydrogenase (EC 1.1.1.44) On leave from the Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.  相似文献   

18.
19.
Kinetic analysis of the reactivation in vitro of glyceraldehyde-3-phosphate dehydrogenase from yeast in the presence of NAD+ suggested that transconformation reactions of inactive monomers and their subsequent association to native tetramers are responsible for the sigmoidal relaxations [R. Rudolph et al. (1977) Eur. J. Biochem. 81, 563-570]. Comparison with the reactivation behaviour in the absence of coenzyme was not feasible at this stage due to the instability of the apoenzyme. In the present study, solvent conditions were established which allowed both apoenzyme and holoenzyme to exhibit high stability. The apoenzyme is stable in phosphate buffer; but if excess NAD+ and phosphate are present (both of which stabilize the enzyme if applied separately), destabilization occurs. Protection of functional groups against oxidation by addition of a reducing agent and by degassing and preventing contact with air, increase the stability. Only partial stabilization can be achieved in the presence of NADH. Comparing the kinetics of reactivation in the presence and absence of coenzymes shows that both oxidized and reduced coenzyme enhance the rate of reactivation significantly, and to the same extent. The kinetic effect of coenzyme binding to the refolding polypeptide chain is discussed in terms of the stabilization of intermediates or end products of reconstitution on the one hand, and acceleration of folding and association reactions, on the other.  相似文献   

20.
The nature of the aggregated form of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes (GPD, EC 1.2.1.13) from Chenopodium rubrum leaves was investigated. After disaggregation of the isozymes in NADP + buffer, and resuspension of the disaggregated isozymes in NAD+ buffer, complete reaggregation could only be achieved by remixing the enzyme with a high molecular weight fraction, from which the isozymes had dissociated during the NADP+ filtration. After separation of the isozymes by inverse ammonium sulphate gradient solubilization, spontaneous extensive reaggregation of each isozyme was observed in NAD+ buffer. The high molecular weight material consisted of ribonucleoprotein, and RNase treatment impaired its ability to promote reaggregation of chloroplast GPD. It is proposed that pyridine nucleotide-controlled aggregation and binding to ribonucleoprotein in vitro are artifacts which reflect an in situ binding to cellular components. Since uncontrolled NAD+-linked activities of the bifunctional isozymes in the chloroplast would lead to an equalization of the NAD + and NADP + redox couples, it is suggested that the reversible binding of the isozymes forms the basis of a regulatory system in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号