首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A molecularly imprinted electrochemical quartz crystal microbalance (EQCM) sensor is fabricated here for taurine, a β ‐amino acid significant for functioning of almost all vital organs. The polymeric film of l ‐methionine was electrochemically deposited on gold‐coated EQCM electrode. Experimental parameters were optimized for controlling the performance of molecularly imprinted polymer (MIP)‐modified sensor such as ratio of monomer and template, number of electropolymerization cycles, mass deposited in each cycle, and pH. Thus, fabricated MIP‐EQCM sensor was successfully applied for estimation of taurine in solutions with varying matrices, such as aqueous, human blood plasma, milk from cow, buffalo, and milk powder. Under optimized parameters, response of MIP sensor to taurine was linearly proportional to its concentration with limit of detection as 0.12μM. Hence, a highly sensitive and selective piezoelectric sensor for taurine has been reported here via imprinting approach.  相似文献   

2.
Zhang Z  Liao H  Li H  Nie L  Yao S 《Analytical biochemistry》2005,336(1):108-116
A piezoelectric sensor coated with a thin molecularly imprinted sol-gel film has been developed for the determination of L-histidine in the liquid phase. Without preprotection, L-histidine was imprinted directly into silica sol-gel films that consisted of a hybrid mixture of functionalized organosilicon precursors (phenyltrimethoxysilane and methyltrimethoxysolane). The viscoelasticity of the film in the air and in buffer solution has been studied by the piezoelectric quartz crystal impedance technique. The binding of L-histidine to the imprinted film in the liquid phase was investigated by the piezoelectric microgravimetry and electrochemical impedance technique. Scatchard analysis showed that the maximum binding site (Qmax) of the L-histidine imprinted sol-gel film is about 23.7 micromol/g. A linear range from 5.0x10(-8) to 1.0x10(-4) M for a detection of L-histidine has been observed with a detection limit of 2.5x10(-8) M for S/N=3. The proposed imprinted sol-gel sensor exhibits good stability, high specificity, and excellent stereoselectivity.  相似文献   

3.
Fei Nie  Jiuru Lu  Yunhua He  Jianxiu Du 《Luminescence》2005,20(4-5):315-320
The reaction between soluble Mn(IV) and tamoxifen can produce chemiluminescence and formaldehyde can enhance this chemiluminescence reaction. A tamoxifen molecular imprinted polymer (MIP) was synthesized and its adsorption selectivity to tamoxifen in aqueous solution was evaluated. Using a synthesized tamoxifen MIP as the recognition material and a soluble Mn(IV)-formaldehyde-tamoxifen chemiluminesence system as the detection system, a new molecule imprinting-chemiluminesence method of determination of tamoxifen was established. The response range of this method was 1.0 x 10(-7)-6.0 x 10(-6) g/mL, with a linear correlation coefficient of 0.997. The detection limit was 4 x 10(-8) g/mL. The relative standard deviation for 5.0 x 10(-7) g/mL tamoxifen solution was 4.1% (n = 9).  相似文献   

4.
A composite of the metal–organic framework compound ZIF-8 doped with CdSe quantum dots (QDs) with sensitive and stable luminescence was synthesized, and a molecularly imprinted electrochemiluminescence (ECL) sensor was constructed based on this composite. The ZIF-8@CdSe molecularly imprinted ECL sensor combines the high sensitivity of ECL and the high selectivity of molecular imprinting to realize the sensitive and specific detection of estriol. CdSe QDs and gold nanoparticles were encapsulated within ZIF-8 to obtain the ZIF-8@CdSe QDs/GNP (ZIF@CdSe/GNP) composite. Subsequently, the GNPs were further loaded on the surface of this composite to obtain the GNP/ZIF@CdSe/GNP composite. l -Cysteine was used to immobilize the GNP/ZIF@CdSe/GNP composite on the surface of a gold electrode to obtain the GNP/ZIF@CdSe/GNP-modified gold electrode. A molecularly imprinted polymer (MIP) film was prepared on the surface of the modified electrode by electropolymerization with o-phenylenediamine as the functional monomer and estriol as the template molecule. After elution, estriol could be specifically recognized by the cavities. The readsorption of estriol by the MIP can prevent the coreactant from reaching the electrode surface through the cavities, thereby weakening ECL. A good linear relationship existed between the ∆ECL and lg C of estriol concentrations of 1 × 10−14 to 1 × 10−9 mol·L−1. The detection limit was as low as 8.9 × 10−16 mol·L−1. The sensor was applied in the determination of estriol in serum samples with a recovery of 97.0–102%.  相似文献   

5.
In this paper, an electrochemical sensor for 17β-estradiol (E2) based on the molecular imprinting polymer (MIP) membranes had been constructed. 6-mercaptonicotinic acid (MNA) and E2 were first assembled on the surface of platinum nanoparticles-modified glassy carbon electrode (PtNPs/GCE) by the formation of Pt-S bonds and hydrogen-bonding interactions, and subsequently the polymer membranes were formed by electropolymerization. Finally, a novel molecularly imprinted sensor (MIS) was obtained after removal of E2. Experimental parameters such as deposition time, scan cycles, pH value and accumulation condition were optimized. Under optimal conditions, the MIS exhibited a large adsorption capacity and high selectivity. A good linearity was obtained in the range of 3.0×10(-8)-5.0×10(-5)molL(-1) (r=0.996) with an estimated detection limit of 1.6×10(-8)molL(-1). MIS had been successfully used to analyze E2 in water samples without complex pretreatment. Meanwhile, the average recoveries were higher than 93.9% with RSD<3.7%. All results above reveal that MIS is an effective electrochemical technique to determine E2 real-time in complicated matrix.  相似文献   

6.
For production of active proteins using heterologous expression systems, refolding of proteins from inclusion bodies often creates a bottleneck due to its poor yield. In this study, we show that molecularly imprinted polymer (MIP) toward native lysozyme promotes the folding of chemically denatured lysozyme. The MIP, which was prepared with 1 M acrylamide, 1 M methacrylic acid, 1 M 2-(dimethylamino)ethyl methacrylate, and 5 mg/mL lysozyme, successfully promoted the refolding of lysozyme, whereas the non-imprinted polymer did not. The refolding yield of 90% was achieved when 15 mg of the MIP was added to 0.3 mg of the unfolded lysozyme. The parallel relationship between the refolding yield and the binding capacity of the MIP suggests that MIP promotes refolding through shifting the folding equilibrium toward the native form by binding the refolded protein.  相似文献   

7.
Molecular imprinted polymers (MIP) as a recognition element for sensors are increasingly of interest and MIP-quartz crystal microbalance (QCM) have started to appear in the literature. In this study, we have combined quartz crystal microbalance with MIP to prepare a sensor using the ability of glucose to chelate of copper (II) ion of methacrylamidohistidine (MAH) monomer to create ligand exchange (LE) assembled monolayer which is suitable for glucose determination. The study includes the measurement of binding interaction of molecularly imprinted QCM sensor via ligand interaction, investigation of the pH effect on frequency shift and recognition selectivity studies of glucose-imprinted polymer with respect to methyl-alpha-d-glucopyranoside and sucrose. Bmax (number of binding sites) and K(D) (dissociation constant of the metal-chelate copolymer) were also calculated using Scathard plot and the detection limit was found as 0.07 mM. MIP showed higher glucose-binding affinity than a well-known glucose binding protein, conconavalin A.  相似文献   

8.
This study describes the development of a sensor with molecularly imprinted polymer (MIP) sensitized with MWCNTs and Salen-Co(III) as recognition element for methimazole (MMI) determination. This is the first report of MWCNTs and Salen-Co(III) in MIP being used to enhance its conductivity and catalytic activity in the electrochemical oxidation process. The electrocatalytic mechanism of MMI was explained in detail by evaluating the obtained voltammograms at various potential sweep rates and pH of buffer solutions. A stable, sensitive analytical method of differential pulse voltammetry (DPV) was developed using the prepared MWCNTs-Salen-Co(III)-MIP electrode for the determination of amounts of MMI, resulting in a linear range of 0.5-6.0 mg L(-1) with detection limit of 0.048 mg L(-1). It was also successfully applied for MMI determination in tablets and spiked urine sample. At three concentration levels, the recoveries for two samples were achieved to 94.0-100.1% and 87.8-101.8%, respectively. Analytical reproducibility and stability of the developed method were also evaluated by RSD, which were calculated as 4.6-6.6% and 2.0-6.1% (n=3), respectively.  相似文献   

9.
A portable amperometric potentiostat was designed and implemented in this work. It was developed to acquisit the current signals produced from bilirubin by an electrochemical sensor. Based on an SOC-based chip, this potentiostat has the merits of moderate accuracy, small size, low cost, and high portability. The bilirubin electrode was prepared by synthesizing a thin layer of bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) onto the Au layer. With the molecularly imprinted polymer (MIP) film, specific detection of bilirubin was successfully achieved. The cyclic voltammogram of the electrode was measured from this assembled potentiostat. The performance from a commercial potentiostat was considered rather stable and was used as a reference to examine and evaluate the performance of the assembled potentiostat. The detected current signals by the bilirubin sensing were obtained. Linear calibration with a sensitivity of 1.344+/-0.38 microA/mg dl was achieved. Our experimental results showed that the proposed potentiostat's performance could achieve sufficient performance. The evaluation was also made from the aspects such as reset time and steady-response time. The self-assembled potentiostat thus demonstrated its ability in precise detection of bilirubin from an electrode layered with the imprinted polymer film.  相似文献   

10.
A new analytical method for the determination of the carcinogenic mycotoxin ochratoxin A (OTA) in red wines has been developed involving a two-dimensional solid-phase extraction (SPE) clean-up protocol on C18-silica and a target-selective molecularly imprinted polymer (MIP). Prior removal of the interfering acidic matrix compounds by C18 solid-phase extraction was crucial for a successful clean-up as direct sample loading onto the MIP led to poor recoveries. The combined solid-phase extraction protocol afforded extracts suitable for sensitive ochratoxin A quantification by HPLC-fluorescence detection. Preliminary validation of the method performance with spiked (0.033-1.0 ng OTA/ml) and commercial red wines provided recoveries >90% and < 10%, with limit of detection (LOD) and limit of quantification (LOQ) of 0.01 and 0.033 ng/ml. However, a similarly favorable performance characteristics was observed in control experiments in which the MIP was replaced by the corresponding non-imprinted polymer (NIP). These findings provide evidence that under the employed experimental conditions specific analyte binding to imprinted binding sites plays a minor role in selective OTA retention. In the framework of this study, other problems inherent to MIP-based solid-phase extraction have been addressed. These include the reproducible preparation of MIP materials with consistent molecular recognition characteristics, the potential for repeated use of MIP, unfavorable polymer swelling in application-relevant solvents, potential sample contamination by template bleeding, and slow analyte binding kinetics.  相似文献   

11.
A quartz crystal nanobalance (QCN) biosensor was developed for the selective determination of phenylalanine (Phe) in aqueous solutions. A Phe imprinted copolymer was synthesized using polyacrylonitrile and acrylic acid [poly(AN-co-AA)]. The copolymer was then coated on quartz crystal electrode to form complementary structures for the template recognition of Phe. The composite electrode was then used to determine Phe levels in solution. Determinations were based on frequency shifts of molecularly imprinted polymer (MIP) modified quartz crystal electrode caused by Phe adsorption. The frequency shifts were linearly dependent on Phe concentration over the range 50∼500 mgL−1. The results obtained show that the imprinted poly(AN-co-AA) modified biosensor had higher sensitivity (0.5839 Hz/mgL−1) than a non-molecularly imprinted copolymer (0.2724 Hz/mgL−1). Furthermore, good reproducibility, R.S.D. = 1.84% (n = 7) was observed, and the detection limit was 45 mgL−1. The selectivity of the imprinted poly(AN-co-AA) modified biosensor was examined using a number of analytes similar to Phe, i.e., dopamine (DA), ascorbic acid (AscA), vanillylmandelic acid (VMA), uric acid (UA), tryptophan (Trp), and tyrosine (Tyr), and the results obtained showed a size dependent selective effect.  相似文献   

12.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Highly efficient enantioselective separation and quantitative recoveries of D- and L-tryptophan in aqueous and real samples can be achieved, with a monolithic molecularly imprinted polymeric fiber that serves both for micro-solid phase extraction and ultratrace sensing, without any false-positive (non-specific) contribution and cross-reactivity, in the range of 0.15-30.00 ng mL(-1) with detection limit as low as 0.0261 ng mL(-1) (relative standard deviation=0.64%, signal/noise=3). The proposed method combining molecularly imprinted micro-solid phase extraction fiber and a complementary molecularly imprinted polymer-carbon composite fiber sensor is proven to be useful for clinical diagnosis of stress-related diseases caused by acute tryptophan depletion.  相似文献   

14.
A molecularly imprinted polymer (MIP) has been prepared using levonorgestrel (LEV) as template. The polymer was synthesised in a non-covalent approach using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linking monomer via a free radical polymerization. An equivalent blank polymer was also synthesised in the absence of the template compound. Batch adsorption experiments were used to evaluate the binding affinity of the imprinted polymer. After packing MIP into a stainless steel column (150 mm x 4.6 mm i.d.), retention and elution of the template and related compounds were evaluated by high-performance liquid chromatography (HPLC). This LEV imprinted polymer was further applied for selective solid phase extraction (SPE) of LEV from human serum. It was confirmed that the binding ability of the prepared MIP for LEV was essentially sufficient in the presence of other compounds coexisting in serum sample. Therefore, as a selective and efficient solid phase material, LEV imprinted polymer has a high potential application in analysis of this steroidal hormone in clinical purposes.  相似文献   

15.
Potentiometric sensor for atrazine based on a molecular imprinted membrane   总被引:4,自引:0,他引:4  
A molecular imprinted polymer (MIP) membrane for atrazine, not containing macropores, was synthesized and implemented in a potentiometric sensor. It is expected to work like a solid ISE (where the specific carrier are the imprinted sites) the specific carrier being the imprinted site. The active ion is the protonated atrazine, positively charged. To form this species the determination is carried out in acidic solution at pH lower than 1.8, in which atrazine is prevalently monoprotonated. At these conditions the membrane potential increases with atrazine concentration over a wide concentration range (3 x 10(-5) to 1 x 10(-3)M). The slope of the function E versus logc is about 25 mV/decade, showing that the atrazine form sorbed on MIP is the biprotonated one. The detection limit is determined by the relatively high concentration of atrazine released by the membrane in the sample solution at the considered conditions. It seems to be independent of the atrazine concentration in the internal solution of the sensor, but it depends on the acidity of the solution. The response time is less than 10s and the sensor can be used for more than 2 months without any divergence.  相似文献   

16.
We have developed a biomimetic sensor for the detection of human immunodeficiency virus type 1 (HIV-1) related protein (glycoprotein 41, gp41) based on epitope imprinting technique. gp41 is the transmembrane protein of HIV-1 and plays an important role in membrane fusion between viruses and infected cells. It is an important index for determining the extent of HIV-1 disease progression and the efficacy of therapeutic intervention. In this work, dopamine was used as the functional monomer and polymerized on the surface of quartz crystal microbalance (QCM) chip in the presence of template, a synthetic peptide with 35 amino acid residues, analogous to residues 579-613 of the gp41. This process resulted in grafting a hydrophilic molecularly imprinted polymer (MIP) film on the QCM chip. QCM measurement showed that the resulting MIP film not only had a great affinity towards the template peptide, but also could bind the corresponding gp41 protein specifically. The dissociation constant (K(d)) of MIP for the template peptide was calculated to be 3.17 nM through Scatchard analysis, which was similar to those of monoclonal antibodies. Direct detection of the gp41 was achieved quantitatively using the resulting MIP-based biomimetic sensor. The detection limit of gp41 was 2 ng/mL, which was comparable to the reported ELISA method. In addition, the practical analytical performance of the sensor was examined by evaluating the detection of gp41 in human urine samples with satisfactory results.  相似文献   

17.
Yang Y  Yi C  Luo J  Liu R  Liu J  Jiang J  Liu X 《Biosensors & bioelectronics》2011,26(5):2607-2612
A voltammetric glucose sensor was prepared from novel molecularly imprinted polymeric micelles (MIPMs) through direct electrodeposition. The MIPMs, which were photo-crosslinkable and nano-scaled with high specific surface area, were prepared via macromolecule self-assembly of an amphiphilic photo-crosslinkable copolymer, combined with a molecular imprinting technique using glucose as the template molecule. A MIP film was formed in situ on the electrode surface by electrodeposition of the MIPMs, while photo-crosslinking led to a robust film which showed good solvent resistant to dissolution. With these features, the resulting sensor showed good response and selectivity towards glucose. In particular, the linear response of this glucose sensor ranged from 0.2 mM to 8 mM and its comparatively higher detection limit, about 10 mM, indicated numerous effective recognition sites among the polymer matrix due to the large specific surface area of MIPM. In addition, this MIP sensor also showed good stability and reversibility. The contribution of this work lies in not only the invention of a new type of glucose MIP sensor with good performance, but also the creation of a novel strategy to develop advanced MIP sensors for a wide range of templates in viewing of the versatility of the amphiphilic copolymers and the ease of control and applicability of the electrodeposition process.  相似文献   

18.
A voltammetric sensor for (-)-ephedrine has been prepared by a novel approach based on immobilisation of an imprinted polymer for ephedrine (MIPE) in an electrosynthesised polypyrrole (PPY) film. Composite films were grown potentiostatically at 1.0 V vs. Pt (QRE) on a glassy carbon electrode using an unconventional "upside-down" (UD) geometry for the three-electrode cell. As a consequence, a high MIP loading was obtained, as revealed by SEM. The sensor response was evaluated, after overoxidation of PPY matrix, by cyclic voltammetry after pre-concentration in a buffered solution of analyte in 0.5-3 mM concentration range. An ephedrine peak at approximately 0.9 V increasing with concentration and saturating at high concentrations was evident. PPY-modified electrode showed a response, which was distinctly lower than the MIP response for the same concentration of the template. The effect of potential interferences including compounds usually found in human fluids (ascorbic acid, uric acid, urea, glucose, sorbitol, glycine, dopamine) was examined.  相似文献   

19.
A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0×10(-8)mol/L-9.0×10(-5)mol/L, with the limit of detection (LOD) of 2.3×10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples.  相似文献   

20.
Recently, the 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been used as a marker to determine the oxidative stress. There is no any cheap and easy determination method based on chips and sensor systems for the determination of 8-OHdG. In this study, we have proposed imprinting methods for 8-OHdG recognition and determination using methacryloylamidohistidine-platinum(II) [MAH-Pt(II)] as a new metal-chelating monomer. The study includes the solid-phase extraction (SPE) of blood sample by a new 8-OHdG imprinted sorbent and the measurement of binding interaction of 8-OHdG imprinted quartz crystal microbalance (QCM) sensor via ligand interaction. 8-OHdG imprinted sorbent has prepared by bulk polymerization of MAH-Pt(II) and N-N'-methylenebisacrylamide. 8-OHdG imprinted sensor has prepared on a QCM chip coating the thiol pretreated Au electrode. At the end of these steps, a thin molecular imprinted polymer (MIP) film for the detection of 8-OHdG has developed and analytical performance of QCM sensor which has prepared using MIP was investigated. The affinity constant (K(a)) for 8-OHdG using MAH-Pt-based thin film has determined by using the Scatchard method. The average percentage recovery of 8-OHdG from plasma samples was found as 80% by using of 8-OHdG imprinted SPE material. At the last step, 8-OHdG level in several blood plasma has been determined by this improved QCM sensor. The obtained results confirmed that the 8-OHdG level in cancer patient's blood was significantly higher than in general subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号