首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Vertical distribution of faecal pellets during FLEX '76   总被引:2,自引:0,他引:2  
During FLEX '76 (Fladen Ground Experiment), the vertical distribution of faecal pellets was studied at a time station on the Fladen Ground (North Sea). Generally, the faecal pellets showed a clearly-defined maximum above the main thermocline within a depth of 0–30 m. Only in a period of storms was the faeces-maximum lowered to the main thermocline, which occurred at 50–60 m depth. The maximum numbers of the copepodCalanus finmarchicus, the most important producer of faecal pellets, initially occupied the same level as the faeces maximum. However, from the middle of May, theC. finmarchicus population started a diel vertical migration, during which, as a rule, the copepods migrated away from the surface region into deeper waters. On this occasion, the faecal pellet maximum did not break up but remained in the uppermost layer of the water column. The high concentrations of faecal pellets found within the uppermost 30 m of the water column contradict the extremely high sinking rates of faeces reported by various authors. The quotients of the depth-integrated counts of faecal pellets andC. finmarchicus individuals were calculated. The main maximum of faeces per individual occurred in the period between 28 April and 6 May 1976. A second, smaller maximum was documented between 23–28 May 1976. These two maxima coincided with the development of phytoplankton blooms observed at this particular time station.JONSDAP '76 Contribution No. 68.  相似文献   

2.
Faecal material and cyclopoid copepods were collected during the expedition ANT IX/3, in the Halley Bay area (Weddell Sea, Antarctica), between January and February 1991. Faecal material comprised pellets produced by krill, copepods, ostracods and appendicularians. Cyclopoid copepods were represented by two genera, Oithona and Oncaea. In the Halley Bay area, higher concentrations of krill faecal material (420.9 mm3 m–2) and chl.-a (39.3 mg m–2) were found within the upper 200 m of the water column of the polynya than in ice-covered open-ocean areas (58.2 mm3m–2 and 25.5 mg m–2, respectively). At an ice-drift station, high concentrations of krill faecal strings under fest-ice were found. In addition, similarities between diatom assemblages in the pack-ice algae and krill faecal strings contents suggest an active utilization of ice-algae by krill populations. Sedimented material collected at 50 m depth by a sediment trap was dominated by krill faecal strings. Contents of small oval pellets (of probable cyclopoid copepod origin) resemble those of krill faecal pellets suggesting that coprophagy was involved. This suggestion is supported by: (1) The small quantity of food particles (other than krill faecal matter) available in the water column (< 0.3 g chl.-al–1). (2) The negative in situ correlation between krill faecal strings and cyclopoid copepods. (3) The structure of cyclopoid copepod buccal appendages, which are more adapted for raptorial feeding.  相似文献   

3.
Werner  Iris 《Hydrobiologia》2000,426(1):89-96
The underside of Arctic sea ice is inhabited by several autochthonous amphipod species (Apherusa glacialis, Onisimus spp., Gammarus wilkitzkii). The amphipods graze on ice-bound organic matter, such as ice algae, detritus and ice fauna, and release faecal pellets into the underlying water column, thus forming a direct link between the sea ice and the pelagic ecosystems. Experiments on faecal pellet production rates showed species-specific differences, which were related to size of the animals. The smallest species, A. glacialis, produced the highest mean number of pellets (15.4 pellets ind.-1 d-1), followed by Onisimus spp. (2.7 pellets ind.-1 d-1) and the largest species, G. wilkitzkii (1.1 pellets ind.-1 d-1). Relative carbon content of the pellets was very similar in all species (21.2–22.6% dry mass). Juvenile amphipods (Onisimus spp., G. wilkitzkii) produced more pellets with less POC than adults. Based on field determinations of the POC concentration in the lowermost 2 cm of the sea ice (mean: 36.4 mg C m-2) and mean amphipod abundances (A. glacialis: 33.8 ind. m-2, Onisimus spp.: 0.5 ind. m-2, G. wilkitzkii: 9.4 ind. m-2) in the Greenland Sea in summer 1994, the amount of POC transferred from the ice to the water by faecal pellet production was estimated (0.7 mg C m-2 d-1 or almost 2% of ice-bound carbon). Since this process probably takes place in all ice-covered Arctic regions as well as during all seasons, grazing and pellet production by under-ice amphipods contributes significantly to matter flux across the ice/water interface.  相似文献   

4.
We have studied the seasonal dynamics of abundance and feeding characteristics of three species of calanoid copepods (Acartia spp., Centropages hamatus and Temora longicornis) in the White Sea from the surface water layer (0–10 m), in order to assess their role in the pelagic food web and to determine the major factors governing their population dynamics during the productive season. These species dominated in the upper water layer (0–10 m) from June through September, producing up to 3 generations per year. Data on the food spectra revealed all species to be omnivorous; but some inter- and intraspecific differences were observed. Generally, copepods consumed diatoms, dinoflagellates and microzooplankton. The omnivory index ‘UC’ (i.e., fatty acid unsaturation coefficient) varied from 0.2 to 0.6, which implied ingestion of phytoplankton. The different degree of selectivity on the same food items by the studied species was observed, and therefore, successful surviving strategy with minimal overlapping could be assumed. In total, the populations of the three studied copepod species grazed up to 2.15 g C m−2 day−1 and released up to 0.68 g C m−2 day−1 in faecal pellets. They consumed up to 50% of particulate organic carbon, or up to 85% of phytoplankton standing stock (in terms of Chl. a), and thus played a significant role in the transformation of particulate organic matter. Seasonal changes in abundance of the studied species depended mostly on water temperature in the early summer, but were also affected by food availability (Chl. a concentration) during the productive season.  相似文献   

5.
Propagation of planktonic copepods: production and mortality of eggs   总被引:1,自引:0,他引:1  
Data on fecundity and egg mortality of neritic copepods were collected in various seasons, areas and under various hydrographical conditions. On a seasonal basis variations in fecundity (F) were related to temperature rather than to the abundance of phytoplankton (P). However, a strong correlation between F and P was evident when water column stability varied horisontally or temporally (i.e. at a tidal front or subsequent to a storm). Estimated specific egg-mortalities were variable and occasionally very severe, up to 9.1 d–1, implying that down to 10–4% of the eggs survive to hatching. The implications for phenology and distribution of copepods are discussed.  相似文献   

6.
In order to investigate the potential for microcystin (MC) production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania), nutrients, phytoplankton and microcystins were sampled inshore (3 m depth) and offshore (18 m depth) from May to August 2002. Significant differences in soluble reactive phosphorus (SRP) and nitrate concentrations between offshore and inshore indicated eutrophication via terrestrial run-off. Though the concentrations of SRP and nitrate ranged between 36–127 and 35–726 μg l −1 each, the phytoplankton biovolume was generally low. The phytoplankton community was dominated by diatoms (Nitzschia acicularis), a number of cyanobacterial species (Aphanocapsa sp., Anabaena sp., Planktolyngbya spp., Microcystis sp.) and cryptomonads. The water column was completely mixed and Nitzschiapeaked in abundance during July. All cyanobacteria were low in abundance during the entire study period (0.1–1.6 mm 3 l −1). Microcystins were analysed using high performance liquid chromatography coupled with diode array detection High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and in most samples no microcystins were detected. The highest concentration of [Asp 3]-MC-RR was found in open water at the surface on July 2nd, 2002 (1 μg l −1). MC concentrations did not pose a potential health risk in the Mwanza Gulf during the study period, however, it is possible that the period of higher cyanobacterial biovolumes has been missed during the sampling period of this study.  相似文献   

7.
Krill diet affects faecal string settling   总被引:1,自引:1,他引:0  
Summary Free-floating sediment traps used on a transect from Scotia Sea to Weddell Sea collected larger, more degraded, krill faecal strings in the deeper (150 m) than in the 50 or 75 m traps. The smallest faecal strings were only present in the shallower traps. Sinking velocity of smaller faecal strings was — as expected — much lower than for larger ones, with a total range of 50 to 800 m · day –1 for faecal string volumes of 0.007 to 0.53 mm3. Krill feeding largely on diatoms produced faeces with higher settling velocity than those feeding on non-diatom phytoplankton. Smaller krill faecal strings do not leave the upper mixed layer. Potential settling velocities as measured in settling tubes (without turbulence), may in this respect be misleading. Small oval faecal pellets of unknown origin showed relatively high settling velocities (80 to 250 m·day–1 for 0.002 to 0.013 mm3) due to higher compaction and lower form resistance to sinking.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

8.
A variable fraction of fecal pellets produced in the epipelagic layer is intercepted and retained before reaching the bottom. We assessed fecal pellet retention in the ice-covered Beaufort Sea in early February by comparing the shape and size-frequency distribution of pellets collected by a sediment trap moored at 210 m to that produced in vitro. Appendicularian ellipsoidal and copepod cylindrical pellets made up 75 and 24% of the flux (165 μg C m−2 day−1). In contrast, production (135 μg C m−2 day−1) was dominated by cylindrical pellets (93%). The vertical flux of cylindrical pellets at 210 m was attenuated by 70%. Pellets >120 μm in width, represented 42% of the production, but were not detected in the trap. Retention most likely resulted from coprorhexic feeding by copepods such as Metridia longa. Our observations suggest that the detritivore food web prevailing under the ice of the Arctic Ocean in winter is dominated by appendicularians feeding on pellets fragmented by copepods.  相似文献   

9.
Zooplankton abundance and biomass were determined during January 1990 at two stations to the north-west of South Georgia using a Longhurst Hardy Plankton Recorder (LHPR). At both shelf and oceanic station sites, zooplankton biomass, (excluding Euphausia superba), was found to be ca. 13 g dry mass m–2. Copepods and small euphausiids dominated the catches. These estimates are over 4 times higher than values generally reported for the Southern Ocean and may reflect firstly, the high productivity of the study area, secondly, the time of year, summer, when biomass for many species is maximal, and thirdly, the high sampling efficiency of the LHPR. Principal components analysis disclosed similarities and differences between adjacent depth strata in terms of abundance, biomass and species composition. At both stations most variability occurred in the mixed layer (0–60 m) and thermocline (60–120 m) with depth horizons below this being more homogeneous. Diel migrations were observed for most taxa with abundance increasing in the mixed layer at night. At the oceanic station, species and higher taxa belonging to the mesopelagic community were generally well spread throughout this domain and, with the exception of Pleuromamma robusta and Metridia curticauda, showed little evidence of migration. The grazing impact of the epipelagic community (copepods and small euphausiids) was estimated to remove 3–4% of the microbial standing stock day–1 and a conservative 25% and 56% of daily primary production at the oceanic and shelf stations respectively.  相似文献   

10.
Vertical flux of faecal pellets was compared in 26 verticallystratified 27 m3 (diameter 2 m, depth 9.3 m) in situ seawaterenclosures deriving from four separate experiments on the Norwegianwest coast. Sediment traps were mounted in the non-mixed lowerlayer at 8 m depth. The zooplankton community composition wasnatural in three of the experiments, while manipulated to includefour concentrations of Calanus finmarchicus in one. Calanoidcopepods such as C. finmarchicus, Paracalanus spp., Pseudocalanusspp. and Microcalanus spp. dominated the zooplankton biomassin all mesocosms, except in eight of the enclosures where thecyclopoid copepod Oithona spp. occupied up to 40% of the biomass.Vertical flux of faecal pellet carbon (FPC) showed a significantnegative correlation with Oithona biomass. In order to determinethe retention potential of Oithona, measured sedimented faecalpellet carbon (FPCsed) was compared with estimated maximum andminimum egestion rates. FPCsed decreased with increased biomassof Oithona. When the contribution of Oithona to the total copepodbiomass was high, FPCsed was reduced to a few per cent of themaximum calanoid egestion rate (Emax) and was significantlyless than the expected minimum calanoid egestion rate (Emin)in four of the mesocosms. On the other hand, FPCsed increasedtowards Emax when the fraction of calanoid copepods increasedtowards 100% of the total copepod biomass. The results wereobtained in experiments characterized by an extensive rangeof physical and biological processes. We suggest that the biomassratio between pellet-producing (calanoids) and pellet-reworkingcopepods (Oithona) may be used to predict relative pellet retentionand/or sedimentation rates of calanoid faecal pellets in naturalplankton.  相似文献   

11.
《Harmful algae》2002,1(4):333-341
An ingestion experiment was carried out in Rı́a de Pontevedra (Spain) with the copepod Temora longicornis in order to determine ingestion rates of the DSP toxin-producers, Dinophysis spp. (Dinophyceae), and the excretion rate of Dinophysis spp. cells within the faecal pellets. Ingestion rate was a function of dinoflagellate abundance and did not vary with either the amount, or the composition of the co-occurring phytoplankton species in the food suspension. Faecal pellet production increased at higher food concentrations. Intact Dinophysis spp. cells representing 34.4% of the total Dinophysis cells ingested by the copepods were found within the pellets. T. longicornis was the only dominant copepod species in the area that fed on Dinophysis spp., thus the pellets produced by T. longicornis were the main source of copepod “toxic” pellets in the media during blooms of Dinophysis spp. These “toxic” pellets might contribute to the maintenance of the toxic algal blooms, if the cells inside the pellets remain viable, can spread the potential toxicity of the toxic dinoflagellates throughout the pelagic food web due to coprophagy, and/or be an important toxic vector into the benthic food web. However, during a Dinophysis spp. bloom, the percentage of cells excreted daily within the pellets was lower than 1% of the total dinoflagellate population and, moreover, copepod faecal pellets represent a small fraction of the sinking material in this area. Although it was not possible to measure the amount of toxins in the pellets, we concluded that copepod faecal pellets do not have an important role in the transport of DSP toxins through the food web in this area.  相似文献   

12.
Summary The abundance and depth distribution of zooplankton faeces in spring to early summer were investigated along meridional transects (47°W and 49°W) that extended from the Scotia Sea (57°S) across the Weddell-Scotia Confluence and into the Weddell Gyre (62°S). The sea ice edge retreated from 59°30S to 61°S during the study. Faeces were sampled with nets, Niskin bottles and sediment traps and subsequently analysed by light and electron (SEM) microscopy. Krill faecal strings and oval faecal pellets of unknown origin were by far the most important zooplankton faeces and highest concentrations were always found in the Confluence often close to the ice border. Krill faeces were usually more abundant in the uppermost layer (0–50m) where they contributed an average of 130 g dry weight m–3. There was an exponential decrease with depth, with a minimum of 0.6 g dry weight m–3 in the 500–1000 m stratum. Oval pellets were more evenly distributed in the upper 1000 m of the water column, with an average of 9 g dry weight m –3, although there was a small peak (20 g dry weight m–3) in the subsurface layer (50–150 m depth). Consecutive collections (day-night) of krill faeces using drifting sediment traps showed that only the larger strings sank from 50 to 150 m depth. Peritrophic membranes appeared to deteriorate during sinking. Diatoms (in particular Nitzschia and Thalassiosira spp.) contributed by far the bulk of material in krill and oval faeces. In samples collected near or under the pack ice, remains of crustaceans in both krill- and oval faeces were also found.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

13.
Zooplankton were collected by vertical tows with 102 µm mesh at ten stations in Boston Harbor, Massachusetts Bay and Cape Cod Bay in February, March, April, June, August, and October, 1992. This study was part of a larger monitoring program to assess the effects of a major sewage abatement project, and sampling periods were designed around periods of major phytoplankton events such as the winter-spring diatom bloom, the stratified summer flagellate period, and the autumn transition from stratified to mixed waters. There was considerable seasonal variation in total zooplankton abundance, with minimal values in April (1929–11631 animals m–3) during a massive bloom of Phaeocystis pouchetii, and maximum values (67 316–261075 animals m–3) in August. There were no consistent trends of total abundance where any particular station had greater or lesser abundance than others over the entire year. Zooplankton abundance was dominated by copepods (adults + copepodites) and copepod nauplii (30.4–100.0% of total zooplankton, mean= 83.2%). Despite the large seasonal variation in zooplankton and copepod abundance, the copepod assemblage was dominated throughout the entire year by the small copepod Oithona similis, followed by Paracalanus parvus. Other less-abundant copepods present year-round were Pseudocalanus newmani, Temora longicornis, Centropages hamatus, C. typicus, and Calanus finmarchicus. Two species of Acartia were present, primarily in low-salinity waters of Boston Harbor: A. hudsonica during cold periods, and A. tonsa in warm ones. Eurytemora herdmani was also a subdominant in Boston Harbor in October. The potential role of zooplankton grazing in phytoplankton dynamics and bloom cycles in these waters must be considered in view of the overwhelming numerical dominance of the zooplankton by Oithona similis which may feed primarily as a carnivore. Furthermore, it seems unlikely that eutrophication-induced alteration of phytoplankton assemblages could cause significant trophic domino effects, reducing abundances of Calanus finmarchicus that are forage of endangered right whales seasonally utilizing Cape Cod Bay because C. finmarchicus has long been known to be a relatively unselective grazer, and most importantly, it is a trivial component of total zooplankton or total copepod abundance in these waters.  相似文献   

14.
Laboratory experiments were undertaken using Amonardia normani and Schizopera cf. compacta, two meiobenthic harpacticoid copepods commonly found in coastal lagoons. The first experiments were designed to determine if the phototrophic sulfur bacteria Chromatium gracile can be ingested by these copepods and at what concentrations. Egestion rate was used as an index of feeding rate. The response of the egestion rate, expressed in numbers of faecal pellets produced by copepod per day, as a function of bacterial concentration followed the functional model. A. normani attained constant feeding rates from the bacterial concentration of 1 × 107 cells ml–1 (5 µg C ml–1) onwards, S. cf. compacta attained constant feeding rates from 2.6 × 107 cells ml–1 (13 µg C ml–1) onwards. The faecal pellet volume changed significantly (p<0.05) between food concentrations for A. normani but not for S. cf. compacta (p>0.05). In order to investigate the effect of the phototrophic bacterial diet on the population dynamics of A. normani three groups of nauplii were maintained at 2 × 107 cells ml–1 and observed every day. The mortality of these nauplii was very high compared to those maintained on a diatom diet (Nitzschia constricta); only in one of the groups did some copepodites develop but no adults were ever observed. Adults fed on bacteria did not have different (p>0.05) survival rates compared to those fed on diatoms, nevertheless, the number of nauplii produced was significantly less (p<0.05) on the bacterial diet. These results lead us to suggest that although the phototrophic sulfur bacteria (Chromatium gracile) can be ingested by both copepod species it cannot sustain the full development of the A. normani population. Thus, a bloom of phototrophic sulfur bacteria does not seem to be a favourable situation for opportunistic benthic copepods to colonize eutrophic coastal lagoons after a dystrophic crisis.  相似文献   

15.
The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 g C·l1, ca 30 g chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 g chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the spring bloom. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton bloom in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

16.
Fractionation of δ13C and δ15N between food, consumer, and faecal pellets was studied in the Arctic marine copepod Calanus glacialis Jaschnov, fed with isotopically distinct algal monocultures. Temporal variations in δ13C and δ15N of copepods that were fed ice algae and phytoplankton followed those of a control group consisting of starved animals. There were no significant trends in the δ13C and δ15N values of copepods that were starved for 42 days, suggesting that the isotopic composition of non-lipid body tissues is unaffected by the metabolic processes during prolonged periods of starvation. The stable isotopic composition of starved copepods therefore seems to reflect food consumed during the previous period of feeding and growth. Faecal pellets produced by feeding copepods were depleted in 13C and 15N by 6.3-11.2‰ and 0.7-9.1‰, respectively, relative to the food ingested. These results indicate that faecal pellet production is an important pathway for the trophic fractionation of δ13C, whereas other fractionation pathways, such as excretion of ammonia, may be relatively more important for δ15N. The strong depletion of 13C in faecal pellets compared to the food suggests that grazing by herbivorous copepods on primary production adds to the variability of δ13C in marine particulate organic matter.  相似文献   

17.
Summary Chlorophyll a, phytoplankton species composition and carbon (PPC) estimated from cell-counts, were monitored together with hydrographic parameters and nutrients in the upper 50 m of Balsfjord (ca. 70° N), northern Norway between 08 February and 29 June 1982. Sediment traps were placed at 10, 50, 100, and 170 m (10 m above bottom) for intervals of 5–20 days during the study period. Trap contents were analyzed for phytoplankton as above; dry weight, particulate organic material (POM), particulate organic nitrogen and carbon (PON and POC), ash, and particulate phosphorus were also measured. The phytoplankton community exhibited three main phases: During the first (02–15 April, chiefly surface biomass) and the second (20 April–10 May, deep biomass-maximum and spring bloom peak) periods, Phaeocystis pouchetii dominated biomass (ca. 50% of PPC) followed by vegetative cells of Chaetoceros socialis. In the third period (10 May onwards, characterized by surface estuarinecir-culation), dino- and microflagellates dominated the low post-bloom biomass. Protozooplankton comprising tintinnids, other ciliates and heterotrophic dinoflagellates increased in abundance. Vegetative cells of phytoplankton were scarce in trap collections at 50 m or below; resting cells of Chaetoceros comprised nearly all the intact sedimenting phytoplankton. Krill faeces accounted for >90% by volume of the total faecal material trapped, despite a >21 biomass dominance of copepods in the fjord. The greatest sedimentation rates of krill faeces were at > 100 m, reflecting the downward migration of krill during the day. In all, 2–3 g Cm–2 of krill faeces were collected, representing ca. twice that from intact phytoplankton cells. POC in the traps at 50 m was ca. 11 gm–2, accounting for ca. 17% of the estimated primary production during the study period. As the secondary production is high, a large proportion of the production of P. pouchetii must be grazed by herbivores. Copepod faeces are probably remineralized in the euphotic zone, while those of krill provide the major coupling between the pelagial and the benthos. The implications of such a sedimentation model for partitioning energy flow between the pelagial and the benthos is discussed.  相似文献   

18.
Sedimentation rates of faecal material, phytoplankton and microzooplanktonand production rates of faecal material from crustaceans andpelagic tunicates were estimated during the austral summer andwinter 1997, and summer 1998, in the northern Humboldt Current(23°S, off Antofagasta, Chile). Sampling periods coveredpre-El Niño (January 1997) and El Niño 1997–98(July 1997 and January 1998). Samples were collected using floatingsediment traps deployed at 65, 100, 200 and 300 m depth in oceanicand coastal areas. Sedimentation rates during January 1997 were,on average, 152 ± 23 and 85 ± 57 mg C m–2day–1 at 65 and 300 m depth, respectively. During July,these rates averaged 93 ± 56 mg C m–2 day–1at 65 m depth and 35 ± 12 mg C m–2 day–1at 300 m depth, while in January 1998 they were 98 and 109 ±37 mg C m–2 day–1 at 65 and 200 m depth, respectively.Recognizable faecal material made up the bulk of the sedimentingmatter, accounting for 8 ± 5% (n = 14), 31 ± 26%(n = 16) and 8 ± 5% (n = 5) of the average total organiccarbon recorded from all sediment trap samples collected duringJanuary and July 1997 and January 1998, respectively. However,at300 m depth, the contribution of recognizable faecal materialto total sedimented organic carbon increased to 43 ±33% (n = 4) during July 1997. The remaining sedimenting particlesconsisted mainly of tintinnids, crustacean exuviae, heterotrophicdinoflagellates (both thecated and athecated) and diatom cells.During this study, we estimated that only a minor fraction (average± SD = 5 ± 8%) of the copepod faecal materialproduced within the photic zone sedimented down to 300 m depth,suggesting an efficient recycling within the overlaying watercolumn. On the other hand, an important fraction (47 ±30%) of the euphausiid faecal strings was collected in the 300m depth trap, suggesting that this material would enhance thedownward flux of particulate organic matter (POC). POC fluxesto 65 and 300 m depth traps were in the range of 4–20%and 3–8% of the estimated primary production during thewhole study period. It is postulated that the overall verticalflux of particulates and, in particular, faecal pellets wasdetermined by a combination of three factors. The first wasthe composition of the zooplankton assemblages in the studyarea. When the dominant group was calanoid copepods, their faecesseemed to contribute poorly to the vertical flux of particulates.On the other hand, when the dominant group was euphausiids,a significant proportion of their faecal material was collectedin the sediment trap located at 300 m depth. The second wasthe relatively high abundance of cyclopoid copepods from thegenera Oncaea, Corycaeus and Oithona, which are reported tofeed on aggregates of phytodetritus and faecal pellets producedby calanoid copepods, suggesting that they may act as a naturalfilter to sedimenting particulates. The third was the compositionand size spectrum of the phyto- and microzooplankton assemblageswhich are potential food sources for the meso- and macrozooplankton.These factors were partially modulated by both the 1997–1998El Niño and seasonality.  相似文献   

19.
Chaetognaths are among the most abundant predators in the Southern Ocean and are potentially important components in the biological carbon pump due to the production of large, fast-sinking fecal pellets. In situ S. gazellae abundance, fecal pellet production, sinking rates, carbon content, and vertical carbon fluxes were measured at the Lazarev Sea between December 2005 and January 2006. Sagitta gazellae produce fecal pellets that sink at speeds of 33–600 m day−1 and have carbon contents of 0.01–0.8 mg C pellet−1. Vertical carbon flux was later compared with the total carbon flux measured at 360 m depth at the study area. Rough estimates using published seasonal abundance of S. gazellae indicate that, at 360 m depth in the Lazarev Sea, this specie may contribute 12 and 5% of the total vertical carbon flux in winter (ice-covered) and summer (ice-free), respectively. Thus, the role of chaetognaths in the downward transport of organic matter may be far more important than previously thought.  相似文献   

20.
Gut fluorescence in herbivorous copepods: an attempt to justify the method   总被引:3,自引:2,他引:1  
Pasternak  A. F. 《Hydrobiologia》1994,292(1):241-248
Recently the gut fluorescence technique has been critisized because of the possible degradation of chlorophyll into nonfluorescent derivatives during passage through copepod guts and changes of the gut passage time with food concentration. Here pigment budgets have been calculated in 6 experiments with Calanus finmarchicus CIV caught 2 km offshore of the Murmansk Marine Biological Institute (the Barents Sea, Dalnije Zelentsi) in September 1992. Copepods were fed with culture of Platymonas viridis at different concentrations. Gut pigment and ingestion rate increased with food concentration in a similar way. On average between 78% and 89% of ingested chlorophyll was recovered in the guts and faecal pellets. No trend for a greater loss of fluorescence at low food concentration than at high was observed. Pigment content of faecal pellets incubated in filtered seawater decreased by 20–30% in the first 7–12 h and by up to 60% in 48 h. The decline of pigment content was accompanied by a rapid bacterial growth (by a factor of 3 in 48 h). Gut passage time increased with decreasing food concentration (from 40 min at 9 µg pigm l–1 to 64 min at 0.9 µg pigm l–1). These results together with some data by other authors suggest that the gut fluorescence method can be used to estimate in situ grazing rate providing gut passage time is measured properly and there are no losses of faecal material. However, careful consideration should be given to the previous feeding history of copepods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号