首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

3.
The biosynthetic L-threonine deaminase (L-threonine hydrolase deaminating, EC 4.2.1.16) has been purified from Escherichia coli K12 regulatory mutant CU18. This mutant has properties that follow the predictions of the autogregulatory model previously proposed for the control of synthesis of the isoleucine-valine biosynthetic enzymes. The autoregulatory model specifies that L-threonine deaminase participates in the control of the expression of the ilv ADE gene cluster as well as the ilv B gene and ilv C gene, which constitute three separate units of regulation. The single mutation in strain CU18 results in altered regulation of ilv gene expression and in the production of an altered L-threonine deaminase. The immature form of the enzyme purified from mutant CU18 exhibits an altered response to L-valine, a maturation-inducing ligand. The native form of the mutant is altered in its apparent Km for L-threonine and in its response to the effects of L-valine and L-isoleucine upon catalytic activity. The mutant and wild type L-threonine deaminases differ in the apoenzyme formed as a consequence of alkaline dialysis. Dialysis of the mutant enzyme yields an apoenzyme mixture, apparently of dimers and monomers, while the wild type enzyme yields only dimers. The CU18 L-threonine deaminase, is however, indistinguishable from the wild type enzyme in molecular weight and subunit composition.  相似文献   

4.
5.
A single-site mutant of Escherichia coli K-12 able to grow in minimal medium in the presence of D-serine at 30 C but not at 42 C was isolated. The mutant forms a D-serine deaminase that is much more sensitive to thermal denaturation in vitro at temperatures above but not below 47 C than that of the wild type. No detectable enzyme is formed by the mutant at 42 C, however, and very little is formed at 37 C. The mutant enzyme is probably more sensitive to intracellular inactivation at high temperatures than the wild-type enzyme. The mutation lies in the dsdA region. The mutant also contains a dsdO mutation, which does not permit hyperinduction of D-serine deaminase synthesis.  相似文献   

6.
7.
8.
9.
Threonine can be used aerobically as the sole source of carbon and energy by mutants of Escherichia coli K-12. The pathway used involves the conversion of threonine via threonine dehydrogenase to aminoketobutyric acid, which is further metabolized by aminoketobutyric acid ligase, forming acetyl coenzyme A and glycine. A strain devoid of serine transhydroxymethylase uses this pathway and excretes glycine as a waste product. Aminoketobutyric acid ligase activity was demonstrated after passage of crude extracts through Sephadex G100.  相似文献   

10.
In a strain carrying an ilvA538 mutation, the ilvGEDA operon expression is decreased (hyperattenuated) and the activity and/or expression of isoleucyl- and valyl- tRNA synthetases is decreased. We have isolated two revertants of ilvA538 owing to mutations in the ilvH gene, whose product is acetohydroxy acid synthase III. The regulatory properties of these revertants are consistent with a dual role for threonine deaminase as an effector of the ilvGEDA operon and the isoleucyl- and valyl- tRNA synthetase structural genes.  相似文献   

11.
Delta-aminolevulinic acid-requiring mutant from Escherichia coli.   总被引:12,自引:9,他引:3       下载免费PDF全文
  相似文献   

12.
Summary We describe the regulatory properties of two strains carrying either the ilvA624 or the ilvA625 mutations, located in the structural gene for threonine deaminase. Crude extracts of both these strains possess a threonine deaminase activity migrating on polyacrylamide gels, differently from the wild type enzyme. Growth studies demonstrate that these mutations do not cause a limitation of isoleucine biosynthesis, suggesting normal catalytic activity of deaminase.A regulatory consequence of the ilvA624 allele is a derepression of the isoleucine-valine biosynthetic enzymes, which is recessive to an ilvA + allele. The ilvA625 mutation causes a derepression which is dominant in an ilvA625/ilvA + diploid. We interpret these data assuming that threonine deaminase, previously shown to be an autogenous regulator of the ilv genes, lacks a repressor function in the ilvA624 mutant, while in the ilvA625 mutant it is a better activator than wild type threonine deaminase.The data are discussed in terms of a model requiring that threonine deaminase, or a precursor of it, is in equilibrium between two forms, one being an activator of gene expression and the other being a repressor.  相似文献   

13.
The determination of the amino acid sequence of the enzyme dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) from a mutant of Escherichia coli B is described. The 159 residues were positioned by automatic Edman degradation of the whole protein, of the reduced and alkylated cyanogen bromide fragments, and of selected tryptic, chymotryptic, and thermolytic digestion products. An N-bromosuccinimide produced fragment of the largest cyanogen bromide peptide was also used in the sequence determination.  相似文献   

14.
The kinetic mechanisms of Escherichia coli phosphofructokinase-2 (Pfk-2) and of the mutant enzyme Pfk-2 were investigated. Initial velocity studies showed that both enzymes have a sequential kinetic mechanism, indicating that both substrates must bind to the enzyme before any products are released. For Pfk-2, the product inhibition kinetics was as follows: fructose-1,6-P2 was a competitive inhibitor versus fructose-6-P at two ATP concentrations (0.1 and 0.4 mM), and noncompetitive versus ATP. The other product inhibition patterns, ADP versus either ATP or fructose-6-P were noncompetitive. Dead-end inhibition studies with an ATP analogue, adenylyl imidodiphosphate, showed uncompetitive inhibition when fructose-6-P was the varied substrate. For Pfk-2, the product inhibition studies revealed that ADP was a competitive inhibitor versus ATP at two fructose-6-P concentrations (0.05 and 0.5 mM), and noncompetitive versus fructose-6-P. The other product, fructose-1, 6-P2, showed noncompetitive inhibition versus both substrates, ATP and fructose-6-P. Sorbitol-6-P, a dead-end inhibitor, exhibited competitive inhibition versus fructose-6-P and uncompetitive versus ATP. These results are in accordance with an Ordered Bi Bi reaction mechanism for both enzymes. In the case of Pfk-2, fructose-6-P would be the first substrate to bind to the enzyme, and fructose-1,6-P2 the last product to be released. For Pfk-2, ATP would be the first substrate to bind to the enzyme, and APD the last product to be released.  相似文献   

15.
Biotin uptake in biotin regulatory mutant of Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
A transport system for biotin in Escherichia coli is regulated by biotin and is not affected by the mutation (bioR) that causes the constitutive synthesis of the bio operon enzymes.  相似文献   

16.
Cysteine has been shown to inhibit growth in Escherichia coli strains C6 and HfrH 72, but not M108A. Growth inhibition was overcome by inclusion of isoleucine, leucine, and valine in the medium. Isoleucine biosynthesis was apparently affected, since addition of this amino acid alone could alter the inhibitory effects of cysteine. Homocysteine, mercaptoethylamine, and mercaptoethanol inhibited growth to varying degrees in some strains, these effects also being prevented by addition of branched-chain amino acids. Cysteine, mercaptoethylamine, and homocysteine were inhibitors of threonine deaminase but not transaminase B, two enzymes of the ilvEDA operon. Cysteine inhibition of threonine deaminase was reversed by threonine, although the pattern of inhibition was mixed. These results suggest a relationship between the growth-inhibitory effects of cysteine and other sulfur compounds and the inhibition of isoleucine synthesis at the level of threonine deaminase.  相似文献   

17.
From an Escherichia coli purine auxotroph a mutant defective in phosphoribosylpyrophosphate (PRib-PP) synthetase has been isolated and partially characterized. In contrast to the parental strain, the mutant was able to grow on nucleosides as purine source, whereas growth on purine bases was reduced. Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 muM respectively, compared to 60 muM and 45 muM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate, stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib-PP synthetase activity was observed in both strains, although to a lesser extent in the mutant. Our data suggest that the mutant harbors a mutation in the structural gene for PRib-PP synthetase. The mutation responsible for the altered PRib-PP synthetase was located in the purB-hemA region at 26 min on the recalibrated linkage map.  相似文献   

18.
Summary A mutant strain of Escherichia coli K 12 is described, which exhibits thermosensitive regulation of D-serine deaminase synthesis. The mutant is distinct in its physiological properties from i TL and i TSS mutants of the lac systems, although it has elements of similarity with both. A model is presented to explain its properties.  相似文献   

19.
Purification of threonine deaminase from Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

20.
An enzyme with phospholipase Al activity was purified some 500-fold from Escherichia coli cell homogenates. Lipase, phospholipase A2, and lysophospholipase copurified with phospholipase A1 and the four activities displayed similar susceptibility to heat treatment. The phospholipase A and lipase activities were recovered in a single band when partially purified preparations were subjected to SDS gel electrophoresis. Phospholipase, lysophospholipase, and lipase all required Ca2+ for activity. Phosphatidylcholine, phosphatidylethanolamine, and their lyso analogues were all hydrolysed at equivalent rates and these were substantially greater than the rate of methylpalmitate or tripalmitoylglycerol hydrolyses under similar incubation conditions. Evidence for a direct but slow hydrolysis of the ester at position 2 of phosphoglyceride was obtained; however, release of fatty acid from this position is mostly indirect involving acyl migration to position 1 and subsequent release of the translocated fatty acid. Escherichia coli, therefore, appears to possess a lipolytic enzyme of broad substrate specificity acting mainly at position 1 but also at position 2 of phosphoglycerides and on triacylglycerols and methyl fatty-acid esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号