首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Streptomycin-induced, third-position misreading of the genetic code   总被引:3,自引:0,他引:3  
Streptomycin was used to increase the frequency of errors in protein synthesis in vivo. In the system under study two misreading errors were observed. Both involved the erroneous insertion of lysine at asparagine codons, because of misreading of a pyrimidine as a purine at the 3' position of the codon. Streptomycin increased the errors at the two codons AAU and AAC to the same extent, thereby maintaining the error ratio found for basal level mistranslation.  相似文献   

2.
It has been inferred from DNA sequence analyses that in echinoderm mitochondria not only the usual asparagine codons AAU and AAC, but also the usual lysine codon AAA, are translated as asparagine by a single mitochondrial (mt) tRNAAsn with the anticodon GUU. Nucleotide sequencing of starfish mt tRNAAsn revealed that the anticodon is GPsiU, U35 at the anticodon second position being modified to pseudouridine (Psi). In contrast, mt tRNALys, corresponding to another lysine codon, AAG, has the anticodon CUU. mt tRNAs possessing anti-codons closely related to that of tRNAAsn, but responsible for decoding only two codons each-tRNAHis, tRNAAsp and tRNATyr-were found to possess unmodified U35 in all cases, suggesting the importance of Psi35 for decoding the three codons. Therefore, the decoding capabilities of two synthetic Escherichia coli tRNAAla variants with the anticodon GPsiU or GUU were examined using an E.coli in vitro translation system. Both tRNAs could translate not only AAC and AAU with similar efficiency, but also AAA with an efficiency that was approximately 2-fold higher in the case of tRNAAlaGPsiU than tRNAAlaGUU. These findings imply that Psi35 of echinoderm mt tRNAAsn actually serves to decode the unusual asparagine codon AAA, resulting in the alteration of the genetic code in echinoderm mitochondria.  相似文献   

3.
During asparagine starvation the frequency of lysine for asparagine substitutions increases to levels that enable one to isolate and sequence mistranslated protein. We have used site-directed mutagenesis to construct a series of derivatives of the gene encoding the coat protein of the bacteriophage MS2. The mutant set constructed has either AAU or AAC as codon three in the gene with each possible adjoining 3' base. Lysine incorporation in coat protein encoded by these genes shows that AAU is misread from 4- to 9-fold more frequently than AAC with any 3' context. Although in some cases context effects of approximately 2-fold were noted, there seems to be no simple hypothesis to explain them.  相似文献   

4.
Transfer RNA molecules translate the genetic code by recognizing cognate mRNA codons during protein synthesis. The anticodon wobble at position 34 and the nucleotide immediately 3' to the anticodon triplet at position 37 display a large diversity of modified nucleosides in the tRNAs of all organisms. We show that tRNA species translating 2-fold degenerate codons require a modified U(34) to enable recognition of their cognate codons ending in A or G but restrict reading of noncognate or near-cognate codons ending in U and C that specify a different amino acid. In particular, the nucleoside modifications 2-thiouridine at position 34 (s(2)U(34)), 5-methylaminomethyluridine at position 34 (mnm(5)U(34)), and 6-threonylcarbamoyladenosine at position 37 (t(6)A(37)) were essential for Watson-Crick (AAA) and wobble (AAG) cognate codon recognition by tRNA(UUU)(Lys) at the ribosomal aminoacyl and peptidyl sites but did not enable the recognition of the asparagine codons (AAU and AAC). We conclude that modified nucleosides evolved to modulate an anticodon domain structure necessary for many tRNA species to accurately translate the genetic code.  相似文献   

5.
Summary  The proposal by Schultz and Yarus is that changes in the genetic code result from ambiguous reading of codons. This is a simplistic catchall scheme. Our codon capture hypothesis was accompanied by case studies of each incident; for example, AAA changing to asparagine from lysine was preceded by all AAA lysine codons mutating to AAG under GC pressure, with disappearance of lysine anticodon UUU, followed by appearance of a new anticodon IUU for asparagine which would wobble-pair with AAU, AAC, and AAA (Ohama et al. 1990a). Ambiguous coding would not confine itself to changes in the genetic code to accommodate the proposal by Schultz and Yarus, but would extend throughout the genome if their idea is correct. Under these circumstances, much impairment of the accuracy in codon reading that is needed for maintenance of the constant sequences of amino acids in proteins would occur. Surely the net effect would be deleterious. Our conclusion is that the proposal by Schultz and Yarus is a “simple and easy answer to a complex and difficult problem,” and is not acceptable.  相似文献   

6.
Control of basal-level codon misreading in Escherichia coli   总被引:2,自引:0,他引:2  
Basal-level misreading of asparagine codons was examined in a number of Escherichia coli strains. Lysine substitutions were measured by quantitating the amount of charge heterogeneity in MS2 coat protein. In most strains the heterogeneity was consistent with misreading of AAU codons at a frequency of 3-6 X 10(-3). Strains with streptomycin resistance mutations (rpsL) have reduced levels of misreading. There is no significant difference in the frequency of basal-level errors in stringent (relA+) and relaxed (relA) strains, even during starvation for amino acids unrelated to the substitution being studied.  相似文献   

7.
Summary The coat protein of the bacteriophage MS2 was found to show an increased level of charge heterogeneity when synthesized in Escherichia coli starved for Asn or Lys. No such increase was found when the host was starved for Arg, His, Ile or Pro. This is the pattern predicted by two-out-of-three codon misreading in the coat protein gene. In the case of Asn starvation, direct measurements of the relative incorporation of Lys demonstrate that the observed charge heterogeneity is the result of mistranslation. Asn starvation increased the error frequency in coat protein to over 0.3 mistake per asparagine codon. The small amount of charge heterogeneity seen in unstarved cells seems also to be the result of misreading Asn codons.  相似文献   

8.
    
Summary Strains of Escherichia coli were starved for asparagine or lysine in order to increase the in vivo level of mistranslation. In a relA strain, asparagine starvation increased the error frequency in elongation factor Tu to 0.12 mistake per asparagine codon, while with lysine starvation in the same strain the error frequency per lysine codon was 0.008. The pattern of isoelectric point changes in the altered protein produced is consistent with third position misreading in the AAN codon group. This high level of mistranslation is not seen in streptomycin resistant (rpsL) strains or in most relA +strains.  相似文献   

9.
G Ajlani  I Meyer  C Vernotte  C Astier 《FEBS letters》1989,246(1-2):207-210
A Synechocytis 6714 mutant resistant to the phenol-type herbicide ioxynil was isolated and characterized. Sensitivity to DCMU and atrazine was tf measured in whole cells and isolated thylakoids. The mutant presents the same sensitivity to atrazine as the wild type and a slightly increased sensitivity to DCMU. A point mutation has been found at codon 266 in the psbAI coding locus (AAC to ACC) resulting in an amino acid change from asparagine to threonine in the D1 protein.  相似文献   

10.
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.  相似文献   

11.
12.
13.
Using tRNAscan-SE and FAStRNA we have identified four tRNA genes in the delayed early region of the bacteriophage D3 genome (GenBank accession No. AF077308). These are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The D3 Thr- and Gly-tRNAs recognize codons, which are rarely used in Pseudomonas aeruginosa and presumably, influence the rate of translation of phage proteins. BLASTN searches revealed that the D3 tRNA genes have homology to tRNA genes from Gram-positive bacteria. Analysis of codon usage in the 91 ORFs discovered in D3 indicates patterns of codon usage reminiscent of Escherichia coli or P. aeruginosa.  相似文献   

14.
Expression of human asparagine synthetase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Human asparagine synthetase was expressed in the yeast Saccharomyces cerevisiae. The identity of the expressed protein was confirmed by immunoblotting and in vitro enzymatic activity. The recombinant enzyme was shown to have both the ammonia- and glutamine-dependent asparagine synthetase activity in vitro. In contrast to overproduction in Escherichia coli, the expressed protein was found to be soluble in the yeast cell. Furthermore, expression in yeast made it possible to isolate non-degraded human asparagine synthetase which had also the N-terminal methionine correctly processed. The yeast expression plasmid was constructed for optimal production of the recombinant enzyme. In addition, unique restriction enzyme sites that bracket the first five codons of the human asparagine synthetase gene were introduced. This will allow the use of oligonucleotide cassette mutagenesis to investigate the role of the N-terminal amino acids in asparagine synthetase enzymatic activity.  相似文献   

15.
Q. Liu 《Plant biosystems》2013,147(1):100-106
Abstract

A comprehensive analysis of sequence patterns around the stop codons was performed, by using more than 26,000 rice full-length cDNA sequences. Here it is shown that the bias was most outstanding at the position immediately before the stop codons (?1 codon), where the AAC codon was strongly preferred among ANC codons. Compared with other positions, the codon immediately after the stop codons (+1 codon) also displayed an apparent difference, and had a strong consensus for base A at the first, C at the second, and A at the third letters, respectively. Notably, the base biases at the positions directly downstream of the stop codons, such as the +4, +5 and +6 positions, were much stronger than other positions in the 3′-UTR region, suggesting that those base positions might act as an extended stop signal in the process of protein synthesis. Examination of the relationship between sequence pattern and gene expression level, assessed by CAI values and EST counting, revealed a tendency towards bigger base biases for highly expressed genes. It could be inferred that the translation stop signal is possibly involved in many sequence recognition elements other than the stop codons; highly expressed genes should hold strong sequence consensus around the stop codons for efficient translation termination.  相似文献   

16.
To determine whether the high-level expression of foreign proteins in Escherichia coli can lead to frequent translational errors, we analyzed amino acid misincorporation in mouse epidermal growth factor (mEGF) produced as a TrpE fusion protein. The mEGF DNA does not encode phenylalanine and determining the phenylalanine content of the purified protein will measure missense errors. Using this approach, we found an error frequency of about 1 in 40 for codons differing by a single base from those for phenylalanine. This is at least ten times higher than the error rate found for normal E. coli protein synthesis and may be due to limiting supply of charged tRNAs and GTP, brought about by the high-level production of the heterologous protein. The unexpectedly high error rate has implications for the clinical use of E. coli-derived therapeutic proteins.  相似文献   

17.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

18.
In Escherichia coli, the isoleucine codon AUA occurs at a frequency of about 0.4% and is the fifth rarest codon in E. coli mRNA. Since there is a correlation between the frequency of codon usage and the level of its cognate tRNA, translational problems might be expected when the mRNA contains high levels of AUA codons. When a hemagglutinin from the influenza virus, a 304-amino-acid protein with 12 (3.9%) AUA codons and 1 tandem codon, and a mupirocin-resistant isoleucyl tRNA synthetase, a 1,024-amino-acid protein, with 33 (3.2%) AUA codons and 2 tandem codons, were expressed in E. coli, product accumulation was highly variable and dependent to some degree on the growth medium. In rich medium, the flu antigen represented about 16% of total cell protein, whereas in minimal medium, it was only 2 to 3% of total cell protein. In the presence of the cloned ileX, which encodes the cognate tRNA for AUA, however, the antigen was 25 to 30% of total cell protein in cells grown in minimal medium. Alternatively, the isoleucyl tRNA synthetase did not accumulate to detectable levels in cells grown in Luria broth unless the ileX tRNA was coexpressed when it accounted for 7 to 9% of total cell protein. These results indicate that the rare isoleucine AUA codon, like the rare arginine codons AGG and AGA, can interfere with the efficient expression of cloned proteins.  相似文献   

19.
The liverwort Marchantia polymorpha mitochondrial DNA encodes almost all tRNAs required for mitochondrial translation except for the isoleucine (AUU, AUC) and threonine (ACA, ACG) codons, while the missing tRNAs are supplied in part by the nucleus and imported in mitochondria. In this paper, we report a finding of two radically different nuclear tRNAVal(AAC) genes and import of the corresponding tRNA isoacceptors in M.polymorpha mitochondria. This finding is surprising since the mtDNA encodes the gene for tRNAVal(UAC), which alone was considered sufficient for translating all four valine codons GUN by the U/N wobble mechanism. The present results suggest for the first time that the import of ncDNA-encoded tRNAs may result in decoding overlaps in plant mitochondria. The coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA-encoded tRNAVal(UAC) in liverwort mitochondria and the significance for the decoding mechanism as well as evolution of tRNA import are discussed.  相似文献   

20.
Genetic and biochemical analysis of Saccharomyces cerevisiae containing a disruption of the nuclear gene (AAC1) encoding the mitochondrial ADP/ATP carrier has revealed a second gene for this protein. The second gene, designated AAC2, has been isolated by genetic complementation and sequenced. AAC2 contains a 954-base pair open reading frame coding for a protein of 318 amino acids which is highly homologous to the AAC1 gene product except that it is nine amino acids longer at the NH2 terminus. The two yeast genes are highly conserved at the level of DNA and protein and share identity with the ADP/ATP carriers from other organisms. Both genes complement an ADP/ATP carrier defect (op1 or pet9). However, the newly isolated gene AAC2 need be present only in one or two copies while the previously isolated AAC1 gene must be present in multiple copies to support growth dependent on a functional carrier protein. This gene dosage-dependent complementation combined with the high degree of conservation suggest that these two functionally equivalent genes may be differentially expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号