首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.  相似文献   

2.
These studies investigated circulatory, respiratory and metabolic responses in four Thoroughbred geldings during the first 400 metres of galloping (mean speed 14.4 +/- 0.38 m.s-1), cantering (mean speed 10.0 +/- 0.61 m.s-1) and walking (mean speed 1.58 +/- 0.05 m.s-1) from a standing start. A radio-controlled device which collected blood samples anaerobically during each 100 m section of the exercise track allowed analyses of changes in and functional relationships of the variables measured. During the 400 m gallop, the mean heart rate (HR) increased from 125 to 201 beats.min-1 and the haematocrit (Hct) from 0.513 to 0.589 l/l-1. The haemoglobin [Hb], lactate [LA] and potassium [K+] concentrations increased significantly, while the pH and the partial pressure of oxygen (PaO2) decreased significantly. The arterial partial pressure of carbon dioxide (PaCO2) and the plasma bicarbonate concentration did not change significantly. There were significant correlations between HR and Hct, HR and [Hb], HR and PaO2, HR and pH, HR and PvCO2, HR and [LA], HR and [K+], pH and [K+], Hct and PaO2, [Hb] and PaO2, PaCO2 and PaO2, [LA] and PaO2, pH and PaO2, [K+] and PaO2, stride frequency and PaO2. With the exception of the PvCO2 which increased significantly, changes in venous blood during the gallop were in the same direction as those of arterial blood. Thirty seconds before the start of the gallop, both HR and [Hb] were significantly higher than at rest, providing an approximate three-fold increase in oxygen delivery compared to that of the resting state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the "critical power" (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using (31)P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subjects initially completed single-leg knee-extension exercise at three to four different constant work rates to the limit of tolerance (range 3-18 min) for estimation of the CP (mean +/- SD, 20 +/- 2 W). Subsequently, the subjects exercised at work rates 10% below CP (CP) for as long as possible, while the metabolic responses in the contracting quadriceps muscle, i.e., phosphorylcreatine concentration ([PCr]), P(i) concentration ([P(i)]), and pH, were estimated using (31)P-MRS. All subjects completed 20 min of CP exercise was 14.7 +/- 7.1 min. During CP exercise, however, [PCr] continued to fall to the point of exhaustion and [P(i)] and pH changed precipitously to values that are typically observed at the termination of high-intensity exhaustive exercise (end-exercise values = 26 +/- 16% of baseline [PCr], 564 +/- 167% of baseline [P(i)], and pH 6.87 +/- 0.10, all P < 0.05 vs. 相似文献   

4.
During resting conditions plasma hydrogen ion concentration ([H+]P) is known to influence ventilation (VE), whereas the control of plasma potassium concentration ([K+]P) at rest and of both [K+]P and VE during exercise are controversial issues. To obtain more information about these variables during muscular work, eight trained men performed two successive intense continuous cycle-ergometer tests, the first (test I) during metabolic acidosis, the second (test II) with an alkalotic pH. No correlation was found between [H+]P and [K+]P or VE in the direction of change of these variables in test I. Furthermore, no correlation between [H+]P and [K+]P in test I and II was seen. Instead [K+]P and VE changed in relation to the exercise intensity. We suggest that the results confirm [K+]P as an indicator of muscular stress. In addition, the similar behaviour of relative values of [K+]P and VE changes in test I (r = 0.9, m = 1.0, where m is the slope of the regression curve) supports the hypothesis that extracellular potassium controls VE and thereby [H+]P also.  相似文献   

5.
《Free radical research》2013,47(10):1269-1274
Abstract

The purpose of this study was to investigate the effects of acute exercise stress on the nuclear factor-erythroid2 p45-related factor 2 (Nrf2)/antioxidant response element (ARE) transactivation, Kelch-like ECH-associated protein 1 (Keap1) cytosolic protein and Nrf2 nucleoprotein expressions, Nrf2 target genes mRNA expressions, and glutathione redox (GSH/GSSG) ratio level; with a particular focus on the changes in Keap1-Nrf2-ARE pathway activation following different durations of exercise. Wild-type mice (C57BL/6J, two months old) were separated into one-hour and six-hour treadmill running groups, as well as a non-exercise control group (n = 10 in each group). Measurements of Nrf2/ARE transactivation, Nrf2 nucleoprotein expressions, Keap1 cytosolic protein expression, Nrf2 target genes’ mRNA expressions (superoxide dismutase-1 [SOD1], superoxide dismutase-2 [SOD2], γ-glutamyl cysteine ligase-modulatory [GCLm], γ-glutamyl cysteine ligase-catalytic [GCLc], glutathione reductase [GR], glutathione peroxidase-1 [Gpx1], catalase [CAT], and hemoxygenase-1 [Ho-1]), and GSH/GSSG ratio were carried out immediately after exercise. The results showed significant increases in Keap1-Nrf2-ARE pathway activation and the mRNA expressions of six measured enzymes in skeletal muscle after six hours of exercise; while in the one-hour exercise group, there was no change in Keap1-Nrf2-ARE pathway activation and only two enzymes’ mRNA expressions were increased. It is suggested that the changes in Keap1-Nrf2-ARE pathway activation and its target genes’ mRNA expressions were dependent on the exercise duration, with longer duration associated with higher responses.  相似文献   

6.
Whether prolonged strenuous exercise performed by athletes at sea level can produce interstitial pulmonary edema is under debate. Chest sonography allows to estimate extravascular lung water, creating ultrasound lung comet-tail (ULC) artifacts. The aim of the study was to determine whether pulmonary water content increases in Ironmen (n = 31) during race at sea level and its correlation with cardiopulmonary function and systemic proinflammatory and cardiac biohumoral markers. A multiple factor analysis approach was used to determine the relations between systemic modifications and ULCs by assessing correlations among variables and groups of variables showing significant pre-post changes. All athletes were asymptomatic for cough and dyspnea at rest and after the race. Immediately after the race, a score of more than five comet tail artifacts, the threshold for a significant detection, was present in 23 athletes (74%; 16.3 ± 11.2; P < 0.01 ULC after the race vs. rest) but decreased 12 h after the end of the race (13 athletes; 42%; 6.3 ± 8.0; P < 0.01 vs. soon after the race). Multiple factor analysis showed significant correlations between ULCs and cardiac-related variables and NH(2)-terminal pro-brain natriuretic peptide. Healthy athletes developed subclinical increase in pulmonary water content immediately after an Ironman race at sea level, as shown by the increased number of ULCs related to cardiac changes occurring during exercise. Hemodynamic changes are one of several potential factors contributing to the mechanisms of ULCs.  相似文献   

7.
Twelve non-specifically trained volunteers (aged 26.5 years, SD 3.6) performed exhausting incremental graded exercise (ST) and 1-min anaerobic cycle ergometer exercise (AnT) at 2-h intervals for the purpose of investigating beta-endorphin (beta-E) behaviour dependent on exercise intensity and anaerobic metabolism. In order to determine [beta-E], adrenocorticotropic hormone [ACTH], cortisol [C], adrenaline [A] and noradrenaline [NA] concentrations, venous blood samples were collected prior and subsequent to exercise until the 20th min of the recovery period, as well as in ST before and after exceeding the individual anaerobic threshold (THan,i). Before, during and after ST, lactate concentration, heart rate and perceived degree of exertion were also determined; after AnT maximum lactate concentration was measured. Both types of exercise led to significant increases in [beta-E], [ACTH], [A] and [NA], with levels of [beta-E] and [ACTH] approximately twice as high after ST as after AnT. The [C] increased significantly only after ST. During ST significant changes in [beta-E] and [ACTH] were measured only after exceeding THan,i. At all measuring times before and after ST and AnT both hormones correlated positively. In AnT the increases of [beta-E] and [A] demonstrated a correlation (r = 0.65; P less than 0.05). Both in AnT and ST there was a relationship between the maximum concentrations of beta-E and lactate (r = 0.63 and 0.71; each P less than 0.05). We therefore conclude that physical exercise with increasing or mostly anaerobic components leads to an increase in [beta-E], the extent correlating with the degree of lactate concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To determine if fatigue at maximal aerobic power output was associated with a critical decrease in cerebral oxygenation, 13 male cyclists performed incremental maximal exercise tests (25 W/min ramp) under normoxic (Norm: 21% Fi(O2)) and acute hypoxic (Hypox: 12% Fi(O2)) conditions. Near-infrared spectroscopy (NIRS) was used to monitor concentration (microM) changes of oxy- and deoxyhemoglobin (Delta[O2Hb], Delta[HHb]) in the left vastus lateralis muscle and frontal cerebral cortex. Changes in total Hb were calculated (Delta[THb] = Delta[O2Hb] + Delta[HHb]) and used as an index of change in regional blood volume. Repeated-measures ANOVA were performed across treatments and work rates (alpha = 0.05). During Norm, cerebral oxygenation rose between 25 and 75% peak power output {Power(peak); increased (inc) Delta[O2Hb], inc. Delta[HHb], inc. Delta[THb]}, but fell from 75 to 100% Power(peak) {decreased (dec) Delta[O2Hb], inc. Delta[HHb], no change Delta[THb]}. In contrast, during Hypox, cerebral oxygenation dropped progressively across all work rates (dec. Delta[O2Hb], inc. Delta[HHb]), whereas Delta[THb] again rose up to 75% Power(peak) and remained constant thereafter. Changes in cerebral oxygenation during Hypox were larger than Norm. In muscle, oxygenation decreased progressively throughout exercise in both Norm and Hypox (dec. Delta[O2Hb], inc. Delta [HHb], inc. Delta[THb]), although Delta[O2Hb] was unchanged between 75 and 100% Power peak. Changes in muscle oxygenation were also greater in Hypox compared with Norm. On the basis of these findings, it is unlikely that changes in cerebral oxygenation limit incremental exercise performance in normoxia, yet it is possible that such changes play a more pivotal role in hypoxia.  相似文献   

9.
O2 concentration, PO2, PCO2, pH, osmolarity, lactate (LA), and hemoglobin (Hb) concentrations in deep forearm venous blood were repeatedly measured during submaximal exercise of forearm muscles. Concentrations of arterial blood gases were determined at rest and during exercise. Experiments were conducted under normoxia and hypobaric hypoxia (PB = 465 Torr). In arterial blood, data obtained during exercise were the same as those obtained during rest under either normoxia or hypoxia. In venous muscular blood, PO2 and O2 concentration were lower at rest and during exercise in hypoxia. The muscular arteriovenous O2 difference during exercise in hypoxia was increased by no more than 10% compared with normoxia, which implied that muscular blood flow during exercise also increased by the same percentage, if we assume that exercise O2 consumption was not affected by hypoxia. Despite increased [LA], the magnitude of changes in PCO2 and pH in hypoxia were smaller than in normoxia during exercise and recovery; this finding is probably due to the increased blood buffer value induced by the greater amount of reduced Hb in hypoxia. Hence all the changes occurring in hypoxia showed that local metabolism was less affected than we expected from the decrease in arterial PO2. The rise in [Hb] that occurred during exercise was lower in hypoxia. Possible underlying mechanisms of the [Hb] rise during exercise are discussed.  相似文献   

10.
The aim of the study was to find out whether maximal exercise performed by healthy young men influences plasma adrenomedullin concentration (ADM) and is the peptide level related to the cardiovascular, metabolic and hormonal changes induced by exercise. Ten subjects (age 24+/-1.0 yr) participated in the study. They performed graded bicycle ergometer exercise until exhaustion. Heart rate (HR) and blood pressure (BP) were measured throughout the test. Before and at the end of exercise venous blood samples were taken for [ADM], noradrenaline [NA], adrenaline [A], growth hormone [hGH], cortisol and lactate [LA] determination. Plasma [ADM] decreased during exercise from 1.71+/-0.09 to 1.53+/-0.10 pmol x l(-1) (p<0.01). This was accompanied by increases in plasma catecholamines and [hGH], while plasma cortisol level did not change. Positive correlation was found between the exercise-induced decreases in plasma ADM and diastolic BP. Blood [LA], systolic and mean BP at the end of exercise correlated negatively with plasma [ADM]. No significant interrelationships were found between plasma ADM, catecholamines or the other hormones measured. The present data suggests, that maximal exercise inhibits ADM secretion in young healthy men. Metabolic acidosis and a decrease in peripheral resistance might be involved in this effect.  相似文献   

11.
目的和方法:采用ABC免疫组织化学法结合图象分析,观察大鼠脑组织神经肽Y、亮氨酸脑啡肽、强啡肽A113 在长期( 共7 周)大强度(速度由15 m/min 递增至35 m/min、运动时间为20 ~25 min/d) 的运动下的变化。结果:安静状态下在丘脑室旁核(PV) 、下丘脑背内侧核(DM) 、下丘脑腹内侧核(VMH)等核团NPY 无显著性变化;在此基础上的末次急性运动结束后3 h NPY 变化尤为明显。安静状态下大鼠尾壳核LENK 下降;而末次急性运动后大鼠下丘脑LENK 被迅速激活而升高。该强度运动能激活下丘脑DYNA113 ,尤以运动结束后30 min 最为明显。结论: NPY、LENK、DYNA113 在该强度运动下大鼠不同脑区呈现不同变化趋势  相似文献   

12.
To examine whether endotoxaemia accompanying long-term, strenuous physical exercise is involved in exercise-induced increase in plasma tumour necrosis factor alpha (TNF-alpha) concentration and polymorphonuclear neutrophil (PMN) activation, 14 male recreational athletes [mean age 28 (SEM 1) years] were studied. Exercise consisted of a 1.5-km river swim, a 40-km bicycle race, and a 10-km road race. Mean time to complete the race was 149.8 (SEM 4.8) min. The plasma concentrations of granulocyte myeloperoxidase (MPO) and TNF-alpha were significantly higher than baseline values immediately and 1 h after exercise (P<0.001). Both variables returned to pre-race levels the day after exercise. Marked, transient decreases in plasma concentrations of anti-lipopolysaccharide (LPS) immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies directed against a panel of selected smooth gram-negative LPS were observed after the race, reaching in most cases minimal values in the blood sample drawn immediately following the completion of the triathlon. There was no significant correlation between the magnitude of PMN activation, as assessed by the increase in plasma concentrations of MPO, and the humoral markers of endotoxaemia and TNF-alpha. An inverse, highly significant relationship between the increase in plasma TNF-alpha concentrations and the changes in circulating anti-LPS IgM antibodies concentrations was observed (r = -0.7; P<0.01). These findings suggest that exercise-induced endotoxaemia was involved in the release of TNF-alpha, that the magnitude of the TNF-alpha response to exercise was down-regulated by anti-LPS antibodies of the IgM class, and that the production of TNF-alpha and endotoxaemia did not seem to play a role in the activation of circulating PMN in the exercising subjects.  相似文献   

13.
We examined the response to exercise of selected physiological variables in horses performing the identical routine for eight days, in the morning (a.m.) or in the afternoon (p.m.). Heart rate (HR), systolic and diastolic blood pressure (BP), and body temperature (BT) were all consistently greater in the p.m. For BP and BT, the absolute increase above the a.m. values was the same at rest and during exercise. For HR, the absolute increase was greater during exercise, but the percent increase was the same as during rest. During exercise, blood glucose decreased, while blood lactate and skin temperature increased; these changes were the same during the a.m. and p.m. sessions. We conclude that there is no indication in horses of a difference in the responses of HR, BP, and BT to exercise between the a.m. and p.m. The circadian oscillations, however, alter the absolute values of these variables both at rest and during exercise, raising the possibility that the safety margins against hyperthermia and hypertension may decrease during p.m. exercise.  相似文献   

14.
The influence of exhaustive exercise on the capacity of liver and muscle of rats to oxidize fatty acids was investigated in vitro. The rate of oxidation of fatty acids by liver preparations was significantly elevated as a result of exhaustion. Concurrently, the concentrations of beta-hydroxybutyrate were elevated in the plasma of the exhausted rats, suggesting that oxidation of fatty acids was also elevated in vivo. These findings are analogous to the findings of increased oxidation of fatty acids that results from training. In muscle, oxidation of palmitate, palmitoylcarnitine and beta-hydroxybutyrate by homogenates and isolated mitochondria was depressed with exercise. Despite the decrease in the oxidative capacity of the muscle preparations, the activities of several enzymes of beta-oxidation were either increased or unchanged as a result of exercise, suggesting that the depression in fatty acid oxidation may not be related to alterations in the process of beta-oxidation. Further studies showed that oxidation of [2-(14)C]pyruvate by muscle was depressed, whereas oxidation of [1-(14)C]pyruvate was not changed as a result of exercise. These results suggest that the decrease in fatty acid oxidation may be related to aberrations in the oxidation of acetyl-CoA. The changes in fatty acid oxidation that were observed, which are at variance with what is reported to occur with training, may have resulted from increased fragility of muscle mitochondria as a result of exercise. This increased fragility may render the mitochondria more susceptible to experimental manipulations in vitro and a subsequent loss of normal function.  相似文献   

15.
The pulmonary responses and changes in plasma acid-base status occurring across the inactive forearm muscle were examined after 30 s of intense exercise in six male subjects exercising on an isokinetic cycle ergometer. Arterial and deep forearm venous blood were sampled at rest and during 10 min after exercise; ventilation and pulmonary gas exchange variables were measured breath by breath during exercise and recovery. Immediately after exercise, ventilation and CO2 output increased to 124 +/- 17 1/min and 3.24 +/- 0.195 l/min, respectively. The subsequent decrease in CO2 output was slower than the decrease in O2 intake (half time of 105 +/- 15 and 47 +/- 4 s, respectively); the respiratory exchange ratio was greater than 1.0 throughout the 10 min of recovery. Arterial plasma concentrations of Na+, K+, and Ca2+ increased transiently after exercise. Arterial lactate ion concentration ([La-]) increased to 14-15 meq/l within 1.5 min and remained at this level for the rest of the study. Throughout recovery there was a positive arteriovenous [La-] difference of 4-5 meq/l, associated with an increase in the arteriovenous strong ion difference ([SID]) and by a large increase in the venous Pco2 and [HCO3-]. These findings were interpreted as indicating uptake of La- by the inactive muscle, leading to a fall in the muscle [SID] and increase in plasma [SID], associated with an increase in muscle PCO2. The venoarterial CO2 content difference was 38% greater than could be accounted for by metabolism of La- alone, suggesting liberation of CO2 stored in muscle, possibly as carbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.  相似文献   

17.
The purpose of this study was to elucidate the participation of plasma PON1 (paraoxonase activity [PON] and arylesterase activity [ARE]) in antioxidant defense in response to a single bout of maximal exercise. PON, ARE, lipid profile, lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), total antioxidant status (ferric reducing ability of plasma [FRAP]), concentration of uric acid [UA], and total bilirubin (TBil) were determined in the plasma before, at the bout and 2 h after maximal exercise on a treadmill in young sportsmen. Chosen physiological parameters also were controlled during maximal exercise. Following maximal exercise, the unaltered level of TBARS and increased FRAP were registered. ARE increment was the highest (37.6%) of all measured variables but lasted for a short time. UA increment was lower than ARE but long-lasting and correlated with FRAP. PON activity increment was associated with the combined effect of body weight, lean, body mass index (BMI) and basal metabolic rate (BMR). We conclude that PON1 is a co-factor of the first line of antioxidant defense during maximal exercise. Its activity is associated with body composition and not the physical fitness of the subjects.  相似文献   

18.
Our study purpose examined salivary hormonal responses to high-speed resistive exercise. Healthy subjects (n = 45) performed 2 elbow flexor workouts on a novel (inertial kinetic exercise; Oconomowoc, WI, USA) strength training device. Our methods included saliva sample collection at both preexercise and immediately postexercise; workouts entailed two 60-second sets separated by a 90-second rest period. The samples were analyzed in duplicate for their testosterone and cortisol concentrations ([T], [C]). Average and maximum elbow flexor torque were measured from each exercise bout; they were later analyzed with a 2(gender) × 2(workout) analysis of variance (ANOVA) with repeated measures for workout. The [T] and [C] each underwent a 2(gender) × 2(time) ANOVA with repeated measures for time. A within-subject design was used to limit error variance. Average and maximum torque each had gender (men > women; p < 0.05) effects. The [T] elicited a 2-way interaction (p < 0.05), as men incurred a significant 14% increase over time, but women's values were unchanged. Yet multivariate regression revealed that 3 predictor variables (body mass and average and maximum torques) did not account for a significant amount of variance associated with the rise in male [T]. Changes in [C] were not significant. In conclusion, changes in [T] concur with the results from other studies that showed significant elevations in male [T], despite the brevity of current workouts and the rather modest volume of muscle mass engaged. Practical applications imply that salivary assays may be a viable alternative to blood draws from athletes, yet coaches and others who may administer this treatment should know that our results may have produced greater pre-post hormonal changes if postexercise sample collection had occurred at a later time point.  相似文献   

19.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

20.
Adaptation of osteochondral tissues is based on the strains experienced during exercise at each location within the joint. Different exercise intensities and types may induce particular site-specific strains, influencing osteochondral adaptation and potentially predisposing to injury. Our hypotheses were that patterns of equine distal tarsal subchondral bone (SCB) thickness relate to the type and intensity of exercise, and that high-intensity exercise leads to site-specific increases in thickness. SCB thickness was measured at defined dorsal and plantar locations on magnetic resonance images of cadaver tarsi collected from horses with a history of low [general purpose (n=20) and horse walker (n=6)] or high [elite competition (n=12), race training (n=15), and treadmill training (n=4)] exercise intensity. SCB thickness was compared between sites within each exercise group and between exercise groups. SCB thickness in elite competition and race training, but not treadmill training, was greater than low-intensity exercise. For general purpose horses, lateral SCB thickness was greater than medial throughout. Horse walker exercise led to relatively thicker lateral and medial SCB compared with the midline. Elite competition was associated with increased SCB thickness of the proximal small tarsal bones medially and the distal bones laterally. For race training and treadmill training, there were minimal differences between sites overall, although the lateral aspect was greater than medial, and medial greater than midline at a few sites for race training. In conclusion, different types of high-intensity exercise were associated with different patterns of SCB thickness across the joints from medial to lateral and proximal to distal, indicating that both exercise intensity and type of exercise affect the SCB response at any particular site within the equine distal tarsal joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号