首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

2.
Functional heterogeneity of side population cells in skeletal muscle   总被引:9,自引:0,他引:9  
Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31(-)CD45(-) SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31(-)CD45(-) SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31(-)CD45(-) SP cells participate in muscle regeneration.  相似文献   

3.
While numerous reports indicate that adult bone marrow-derived cells can contribute to nonhematopoietic tissues in vivo in adult mice, the generally low frequency of these events has made it difficult to study the molecular and cellular pathways involved. Here, we show a 1000-fold range in the frequency with which diverse skeletal muscles incorporate adult bone marrow-derived cells in adult mice. Most striking was the finding of one specific muscle, the panniculus carnosus, in which up to 5% of myofibers incorporated bone marrow-derived cells over a 16- month period in the absence of experimentally induced selective pressure. These results suggest that muscles differ physiologically, establishing the panniculus carnosus as an assay for identifying the key regulators, such as trophic, homing, and differentiation factors, as well as the relevant cells within the bone marrow that are capable of circulating throughout the periphery and contributing to adult, nonhematopoietic tissues, such as skeletal muscle. Finally, the 5% incorporation of adult stem cells into skeletal muscle is the highest reported to date in the absence of experimentally induced selective pressure and is at a level that may be consistent with improving the function of defective muscle tissue.  相似文献   

4.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

5.
Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is beneficial for the treatment of acute kidney injury (AKI), but the poor survival of BMSCs limits the repair effect. The oxidative stress in the AKI microenvironment is regarded as the main reason. Considering the potent anti-oxidant ability of heme oxygenase-1 (HO-1), HO-1 overexpression in BMSCs can be expected to improve the survival of BMSCs and correspondingly enhance the AKI repair effect. Here, BMSCs are transfected with pLV-HO-1/eGFP and pLV–eGFP by the lentivirus vector to get HO-1-BMSCs and eGFP-BMSCs, respectively. Ischemia/reperfusion-AKI kidney homogenate supernatant (KHS) is prepared for treating BMSCs, eGFP-BMSCs and HO-1-BMSCs. AKI-KHS results in a high inhibitory rate of BMSCs growth and a high proportion of TUNEL positive BMSCs, while HO-1 overexpression inverses this phenomenon and re-establishes the antioxidant and oxidant balance in HO-1-BMSCs. Phosphorylations of p53 and p38 mitogen-activated protein kinases (p38 MAPK) in HO-1-BMSCs decrease. Lower levels of monocyte chemotactic protein 1, tumor necrosis factor-α and interleukin 1β are also observed in supernatant of HO-1-BMSCs. The in vivo study shows that HO-1 overexpression sharply decreases the apoptosis of BMSCs in the injured kidney, and correspondingly the renal function of the AKI rats improves significantly. In conclusion, BMSCs with HO-1 overexpression suggests a better survival in the I/R-AKI microenvironment and a better kidney repair effect. The anti-oxidant effect via the inactivations of the downstream p53 and p38MAPK in BMSCs and the anti-inflammation could be the mechanisms. It provides a novel approach for the cell-based AKI-therapy.  相似文献   

6.
7.
8.
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians.Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility,biodegradability and osteoinductivity.Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells(MSCs).In particular,a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue.These adipose stem cells(ASCs)can be obtained in large quantities with little donor site morbidity or patient discomfort,in contrast to the invasive and painful isolation of bone marrow MSCs.The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models,with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients.Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration,the lack of standardization in applied techniques makes the comparison between studies difficult.Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns,which must be resolved to permit application in regenerative medicine.  相似文献   

9.
The molecular events associated with the development of common myeloid progenitor (CMP) remain largely unknown. This study reports that a novel glycosylphosphatidylinositol (GPI)-anchored lactoferrin CSP82 on uninitiated mouse bone marrow cells (BMC) may be involved in inducing pro-DC from CMP.By peptide mass fingerprinting, CSP82 has been identified as the mouse lactoferrin precursor, but unlike the latter, it occurs as a GPI-linked cell-surface protein. The GPI-linkage was demonstrated on BMC-derived immunoprecipitates and by other techniques. Furthermore, BMC and hematopoietic stem BM cells following incubation with either CSP82 peptide antibody or purified Reagent A yielded CMP-like progenitors (BM4 cells). These progenitors expressed a previously reported cytosolic phosphoprotein DP58 (AnkRD 34B protein). Continued cultivation of BMC in media containing only anti-CSP82 antibody led to DC-like cells, that bore phenotypic and endocytic resemblance with those obtained using GM-CSF. The results suggest that a receptor lactoferrin on BMC may be an important non-cytokine mechanism for early promyeloid progenitor differentiation.  相似文献   

10.
11.
12.
During regeneration in planarians, anterior (head and prepharyngeal) and posterior (postpharyngeal and tail) fragments rebuild one of the most peculiar structures of planarians: the pharynx and the pharynx cavity. Previous studies (see Brønsted, 1969, for a general review, and Asai, 1990, 1991, for anterior regeneration) have shown that within postpharyngeal pieces both structures appear in the old stump from clusters of undifferentiated cells. However, the lineage and differentiation of their elements (inner and outer epithelial cells, muscle layers, gland cells, nerve rings) and the overall pattern of growth and differentiation is not clear.  相似文献   

13.
BMPs regulate the developmental program of hematopoiesis. We demonstrate an increased expression of the BMP receptors Ia and II on cultured CD34+ cells and examine the impact of BMP-2, -4 and -7 on postnatal HPC cultured with stem cell factor, flt3-ligand and interleukin-3 (SF3). The addition of BMP-2 at 5, 25 and 50 ng/m to serum-free medium with SF3 yielded a 1.4- to 1.2-fold increase of CD34+ cells after seven days, but no effect on CFC or LTC-IC was observed. BMP-4 at 25 ng/ml induced a 2.9-fold expansion of colony-forming cells (CFC) within 1 week followed by a decrease to pre-culture values on day 14. The number of long-term culture initiating cells (LTC-IC) decreased by the factor 40 from day 0 to day 14. BMP-7 at 5–50 ng/ml had not effect on the expansion of CD34+ cells and CFC, but improved at 5 ng/ml the survival of LTC-IC significantly as compared to SF3 alone. In summary, BMP-2, -4 and -7 have no effect on the proliferation of CD34+ cells and CFC cultured with serum-free medium and SF3. However, BMP-7 but not BMP-2 and BMP-4 prevents the loss of primitive hematopoietic progenitor cells cultured in SFM plus SF3.  相似文献   

14.
Summary The ultrastructure of the chief cells of the parathyroid gland and thyroid parafollicular (C) cells and the morphology of bone in calcium depletion and subsequent repletion were examined in young growing pigs. A low calcium diet resulted in osteopenia, increased removal of the cartilaginous core, osteoclasia and osteocytic osteolysis. Subsequent repletion quickly returned bone to normal. In pigs fed the low calcium diet, there was a marked depletion of secretory granules but a striking increase in the number of microtubules in chief cells. Increasing the calcium content of the diet to normal quickly returned the ultrastructural appearance of chief cells to apparent normal. In the initial response to calcium repletion, chief cells exhibited large number of lysosomes and occasionally prominent paracrystalloid bodies. Electron microscopic examination of parafollicular (C) cells of the thyroid gland failed to reveal differences in ultrastructure between test and control pigs. These findings support the view that bone resorption following calcium deficiency may be the result of a secondary hyperparathyroidism rather than of calcium deficiency per se.Supported by U.S.P.H.S. Grant A.M. 12957 from the Division of Arthritis and Metabolic Diseases  相似文献   

15.
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ~20%. Consistent with this, analysis of GU in muscle cells from α1(-/-)/α2(-/-) AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ~35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.  相似文献   

16.
17.
Junctophilins (JPs) anchor the endo/sarcoplasmic reticulum to the plasma membrane, thus contributing to the assembly of junctional membrane complexes in striated muscles and neurons. Recent studies have shown that JPs may be also involved in regulating Ca2+ homeostasis. Here, we report that in skeletal muscle, JP1 and JP2 are part of a complex that, in addition to ryanodine receptor 1 (RyR1), includes caveolin 3 and the dihydropyridine receptor (DHPR). The interaction between JPs and DHPR was mediated by a region encompassing amino acids 230-369 and amino acids 216-399 in JP1 and JP2, respectively. Immunofluorescence studies revealed that the pattern of DHPR and RyR signals in C2C12 cells knocked down for JP1 and JP2 was rather diffused and characterized by smaller puncta in contrast to that observed in control cells. Functional experiments revealed that down-regulation of JPs in differentiated C2C12 cells resulted in a reduction of intramembrane charge movement and the L-type Ca2+ current accompanied by a reduced number of DHPRs at the plasma membrane, whereas there was no substantial alteration in Ca2+ release from the sterol regulatory element-binding protein. Altogether, these results suggest that JP1 and JP2 can facilitate the assembly of DHPR with other proteins of the excitation-contraction coupling machinery.  相似文献   

18.
19.
There is widespread interest in the use of bone marrow stromal cells (BMSC) for tissue reconstruction and repair and for gene therapy. BMSC represent the differentiated progeny of CFU-F, which however comprise a developmentally heterogeneous population as is reflected in the cellular heterogeneity of the cell populations to which they give rise. We have compared the efficacy of monoclonal antibodies recognising a series of stromal antigens, viz. STRO-1, HOP-26, CD49a and SB-10/CD166, as tools for the enrichment of CFU-F prior to culture and as developmental markers for culture-expanded BMSC. In freshly isolated bone marrow mononuclear cells (BMMNC), the proportion of antigen-positive cells was 27%, 46%, 5% and 19% for STRO-1, HOP-26, CD49a and CD166, respectively. All CD49a+ cells co-expressed STRO-1. The degree of CFU-F enrichment obtained with anti-CD49a (~18-fold) by a one-pass immunoselection strategy was significantly greater than that of all other antibodies tested. BMSC expressed higher levels of all antigens investigated (except for HOP-26) compared with BMMNC. Expression of STRO-1 and CD49a remained restricted to a subset of BMSC, whereas all BMSC were SB-10/CD166 positive. Treatment with dexamethasone (10 nM), which promotes the differentiation and further maturation of cells of the osteogenic lineage in this cell culture system, increased the expression of CD49a and HOP-26. The CD49a+ and HOP-26+ fractions of BMSC were further subdivided by dual-labelling with anti-STRO-1 and B4–78 (an antibody recognising the B/L/K isoform of the enzyme alkaline phosphatase), respectively. By using a variety of criteria, the HOP-26 antigen was identified as CD63, a member of the tetraspanin family of proteins thought to modulate integrin compartmentalisation and signalling.K.S., S.W., C.M.J. and J.A.L. gratefully acknowledge the financial support of the University Bath, the Arthritis Research Campaign and the Wellcome Trust  相似文献   

20.
Human colon carcinoma cells express 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1alpha,25-dihydroxyvitamin D(3) (1,25-D3), which can be metabolized by 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号