首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Agmatine is the decarboxylation product of arginine and a number of bacteria have devoted enzymatic pathways for its metabolism. Pseudomonas aeruginosa harbours the aguBA operon that metabolizes agmatine to putrescine, which can be subsequently converted into other polyamines or shunted into the TCA cycle for energy production. We discovered an alternate agmatine operon in the P. aeruginosa strain PA14 named agu2ABCA′ that contains two genes for agmatine deiminases (agu2A and agu2A′). This operon was found to be present in 25% of clinical P. aeruginosa isolates. Agu2A′ contains a twin‐arginine translocation signal at its N‐terminus and site‐directed mutagenesis and cell fractionation experiments confirmed this protein is secreted to the periplasm. Analysis of the agu2ABCA′ promoter demonstrates that agmatine induces expression of the operon during the stationary phase of growth and during biofilm growth and agu2ABCA′ provides only weak complementation of aguBA, which is induced during log phase. Biofilm assays of mutants of all three agmatine deiminase genes in PA14 revealed that deletion of agu2ABCA′, specifically its secreted product Agu2A′, reduces biofilm production of PA14 following addition of exogenous agmatine. Together, these findings reveal a novel role for the agu2ABCA′ operon in the biofilm development of P. aeruginosa.  相似文献   

3.
4.
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca2+. The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c 550 the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c 550.  相似文献   

5.
Summary The hypersensitive response of tobacco to inoculation with tobacco mosaic virus (TMV) is controlled by a single dominant gene, the N gene. As a first step in localizing and transferring the N gene, we have prepared a line of tobacco plants in which the kanamycin-resistance (Kmr) gene is closely linked to the N gene. Nicotiana tabacum plants heterozygous for the N gene were transformed to Kmr by Agrobacterium carrying pMON200. Eighty-nine independent transformed clones were regenerated and were backcrossed with nontransformed, TMV-sensitive plants. Progeny from these crosses were screened first for Kmr; then the Kmr progeny were inoculated with TMV and scored for the hypersensitive response. Of the initial 89 clones, 68 appeared to have integrated a single functional Kmr gene. Initial tests for TMV resistance indicated possible linkage between Kmr and the N gene in 11 plants. With further testing, linkage has been established for two of these plant lines. In one of these lines, the two genes were 30–40 map units apart, and evidence of somatic instability in the linkage was obtained. However, in the second line, linkage between Kmr and the N gene was tight, and recombination between the genes in this case was only 5%. Southern hybridization revealed that this plant contained only a single copy of the Kmr gene. Linkage between Kmr and the N gene in this plant line has been verified in each of two additional backcross generations.Abbreviations nptII Neomycin phosphotransferase gene - Kmr kanamycin resistant - Kms kanamycin sensitive - TMV tobacco mosaic virus - TMV-R TMV resistant - TMV-S TMV sensitive  相似文献   

6.
Genes of the threonine operon ofEscherichia coli were used for the construction of aBrevibacterium flavum strain excreting threonine. Using the shuttle vector pCEM300 and a newly constructed shuttle vector pEC71 (7.1 kb, Kmr/Nmr), various plasmids carryingE. coli thr genes were prepared. Mutants resistant to the threonine analog 2-amino-3-hydroxyvaleric acid (AHV) were isolated after the ethyl methanesulfonate treatment ofB. flavum carrying these recombinant plasmids. A mutant ofB. flavum CCM 351 carrying the cloned genesthrA andthrB accumulated 12 g/L of threonine after 48 h of cultivation.  相似文献   

7.
Plasmid RP4, which normally confers resistance to ampicillin (Apr), tetracycline (Tcr), and kanamycin (Kmr) to its hosts, failed to express enhanced Apr when transferred from Escherichia coli to Azospirillum brasilense which has its own intrinsic β-lactamase. Even in a β-lactamase-deficient mutant, A. brasilense RG-D16, no increase in β-lactamase or significant Apr appeared following transfer of RP4. However, A. brasilense RG (RP4) and A. brasilense RG-D16 (RP4) did exhibit Tcr Kmr. When RP4 was transferred back from A. brasilense to E. coli all three drug resistances and β-lactamase activity were fully expressed.  相似文献   

8.
Summary The deletion plasmids, pRBH1 (1.5 MDa, kanamycin resistance, Kmr) and pUB110dB (1.5 MDa, Kmr), were obtained from pTB913 (2.9 MDa, Kmr, isolated from a thermophilic bacillus) and pUB110 (3.0 MDa, Kmr, from Staphylococcus aureus), respectively. All the nucleotide sequences of these deletion plasmids were determined. Replication origin regions of pRBH1 and pUB110dB contained, respectively, 63 base-pair inverted repeat and a large open reading frame, encoding RepB protein (235 amino acid residues). The nucleotide sequences were identical to each other except for one base in the center of the inverted repeat. Two copy number mutant plasmids, pRBHC3 and pRBHC7, were obtained from pRBH1. The mutation points were located at different positions in the RepB protein coding region (Gly to Asp for pRBHC3 and Gly to Glu for pRBHC7). RepB protein was shown to be involved in the copy number control of these plasmids.  相似文献   

9.
Genetic transformation of flax (Linum usitatissimum) has been achieved using an A. tumefaciens strain carrying a non-oncogenic Ti plasmid-derived vector containing a chimaeric npt-II gene and a wild type nopaline synthase gene. Fertile, transformed shoots were most easily obtained from Kmr callus developing on hypocotyl sections. The totipotency of the Kmr callus was dependent upon its origin. T-DNA was visualised by Southern blotting in all Kmr tissues. Efficient expression of nopaline synthase and the chimaeric npt-II gene was found in transformed Kmr callus and regenerated shoots.Abbreviations npt-II neomycin phosphotransferase II gene - NPT-II neomycin phosphotransferase II - nos nopaline synthase gene promoter - Kmr kanamycin resistant - BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MSD4×2 medium D4×2 based on Murashige & Skoog medium (see Scott & Draper, 1987)  相似文献   

10.
Zymomonas mobilis ATCC 53431, a fructokinase negative mutant is unable to utilize fructose as a sole carbon source for growth. At high fructose concentrations, however, fructose was converted to ethanol. The fructose uptake displayed MICHAELIS -MENTEN kinetics with an apparent Km of 185 mM fructose. Purified glucokinase from ATCC 53431 and the wild strain ATCC 29191 both exhibited fructose phosphorylating activity at high fructose concentrations with an apparent Km value of 222 mM fructose. Glucokinase substrate specificity was found not be absolute, as previously reported.  相似文献   

11.
12.
13.
14.
Summary Brevibacterium methylicum is a newly isolated Gram-positive facultatively methylotrophic bacterium that uses the NAD+-dependent methanol dehydrogenase for methanol oxidation and assimilates its carbon via the ribulose monophosphate cycle. Protoplasts prepared by lysozyme treatment of B. methylicum cells grown in the presence of glycine were transformed by plasmid shuttle vectors pCEM500 (16.5 kb; Smr/Spr, Kmr/Gmr) and pEC71 (7.1 kb; Kmr/Nmr) constructed on the basis of B. lactofermentum plasmid pAM330 and replicating in Escherichia coli and in amino-acid-producing coryneform bacteria. The resistance markers were found to be expressed in B. methylicum and autonomous plasmid DNAs of various size were isolated from the transformants. The presence of the pAM330 replicon in these plasmids was demonstrated by DNA-DNA hybridization experiments. Offprint requests to: J. Nevera  相似文献   

15.
Pf prophages are ssDNA filamentous prophages that are prevalent among various Pseudomonas aeruginosa strains. The genomes of Pf prophages contain not only core genes encoding functions involved in phage replication, structure and assembly but also accessory genes. By studying the accessory genes in the Pf4 prophage in P. aeruginosa PAO1, we provided experimental evidence to demonstrate that PA0729 and the upstream ORF Rorf0727 near the right attachment site of Pf4 form a type II toxin/antitoxin (TA) pair. Importantly, we found that the deletion of the toxin gene PA0729 greatly increased Pf4 phage production. We thus suggest the toxin PA0729 be named PfiT for Pf 4 i nhibition t oxin and Rorf0727 be named PfiA for Pf iT a ntitoxin. The PfiT toxin directly binds to PfiA and functions as a corepressor of PfiA for the TA operon. The PfiAT complex exhibited autoregulation by binding to a palindrome (5′-AATTC N5GTTAA -3′) overlapping the -35 region of the TA operon. The deletion of pfiT disrupted TA autoregulation and activated pfiA expression. Additionally, the deletion of pfiT also activated the expression of the replication initiation factor gene PA0727. Moreover, the Pf4 phage released from the pfiT deletion mutant overcame the immunity provided by the phage repressor Pf4r. Therefore, this study reveals that the TA systems in Pf prophages can regulate phage production and phage immunity, providing new insights into the function of TAs in mobile genetic elements.  相似文献   

16.
Cell aggregation is a stress response and serves as a survival strategy for Pseudomonas aeruginosa strain PAO1 during growth with the toxic detergent Na‐dodecylsulfate (SDS). This process involves the psl operon and is linked to c‐di‐GMP signalling. The induction of cell aggregation in response to SDS was studied. Transposon and site‐directed mutagenesis revealed that the cupA‐operon and the co‐transcribed genes siaA (PA0172) and siaD (PA0169) were essential for SDS‐induced aggregation. While siaA encodes a putative membrane protein with a HAMP and a PP2C‐like phosphatase domain, siaD encodes a putative diguanylate cyclase involved in the biosynthesis of c‐di‐GMP. Complementation studies uncovered that the loss of SDS‐induced aggregation in the formerly isolated spontaneous mutant strain N was caused by a non‐functional siaA allele. DNA‐microarray analysis of SDS‐grown cells revealed consistent activation of eight genes, including cupA1, with known or presumptive important functions in cell aggregation in the parent strain compared with non‐aggregating siaA and siaD mutants. A siaAD‐dependent increase of cupA1 mRNA levels in SDS‐grown cells was also shown by Northern blots. These results clearly demonstrate that SiaAD are essential for inducing cell aggregation as a specific response to SDS and suggest that they are responsible for perceiving and transducing SDS‐related stress.  相似文献   

17.
Previously we have demonstrated gene targeting in plants after Agrobacterium-mediated transformation. In these initial experiments a transgenic tobacco line 104 containing a T-DNA insertion with a defective neomycin phosphotransferase (nptII) gene was transformed with a repair construct containing an otherwise defective nptII gene. Homologous recombination between the chromosomally located target and the incoming complementary defective nptII construct generated an intact nptII gene and led to a kanamycin-resistant (Kmr) phenotype. The gene targeting frequency was 1×10–5. In order to compare direct gene transfer and Agrobacterium-mediated transformation with respect to gene targeting we transformed the same transgenic tobacco line 104 via electroporation. A total of 1.35×108 protoplasts were transformed with the repair construct. Out of nearly 221 000 transformed cells 477 Kmr calli were selected. Screening the Kmr calli via PCR for recombination events revealed that in none of these calli gene targeting had occurred. To establish the origin of the high number of Kmr calli in which gene targeting had not occurred we analysed plants regenerated from 24 Kmr calli via PCR and sequence analysis. This revealed that in 21 out of 24 plants analysed the 5-deleted nptII gene was fused to the hygromycin phosphotransferase (hpt) gene that was also present on the repair construct. Sequence analysis of 7 hpt/nptII gene fusions showed that they all contained a continuous open reading frame. The absence of significant homology at the fusion site indicated that fusion occurred via a process of illegitimate recombination. Therefore, illegitimate recombination between an introduced defective gene and another gene present on the repair construct or the chromosome has to be taken into account as a standard byproduct in gene targeting experiments.  相似文献   

18.
The synthesis of unsaturated fatty acids in Mycobacterium smegmatis is poorly characterized. Bioinformatic analysis revealed four putative fatty acid desaturases in its genome, one of which, MSMEG_1886, is highly homologous to desA3, the only palmitoyl/stearoyl desaturase present in the Mycobacterium tuberculosis genome. A MSMEG_1886 deletion mutant was partially auxotrophic for oleic acid and viable at 37°C and 25°C, although with a long lag phase in liquid medium. Fatty acid analysis suggested that MSMEG_1886 is a palmitoyl/stearoyl desaturase, as the synthesis of palmitoleic acid was abrogated, while oleic acid contents dropped by half in the mutant. Deletion of the operon MSMEG_1741‐1743 (highly homologous to a Pseudomonas aeruginosa acyl‐CoA desaturase) had little effect on growth of the parental strain; however the double mutant MSMEG_1886‐MSMEG_1741‐1743 strictly required oleic acid for growth. The ΔMSMEG_1886‐ΔMSMEG_1741 double mutant was able to grow (poorly but better than the ΔMSMEG_1886 single mutant) in solid and liquid media devoid of oleic acid, suggesting a repressor role for ΔMSMEG_1741. Fatty acid analysis of the described mutants suggested that MSMEG_1742‐43 desaturates C18:0 and C24:0 fatty acids. Thus, although the M. smegmatis desA3 homologue is the major player in unsaturated fatty acid synthesis, a second set of genes is also involved.  相似文献   

19.
20.
A transposition mutant of Bacillus subtilis (designated JC901) that was isolated on the basis of growth inhibition by Na at elevated pH, was deficient in energy-dependent Na extrusion. The capacity of the mutant JC901 for Na -dependent pH homeostasis was unaffected relative to the wild-type strain, as assessed by regulation of cytoplasmic pH after an alkaline shift. The site of transposition was near the 3 -terminal end of a gene, natB, predicted to encode a membrane protein, NatB. NatB possesses six putative membrane-spanning regions at its C-terminus, and exhibits modest sequence similarity to regions of eukaryotic Na+/H+ exchangers. Sequence and Northern blot analyses suggested that natB forms an operon with an upstream gene, natA. The predicted product of natA is a member of the family of ATP-binding proteins that are components of transport systems of the ATP-binding cassette (ABC) or traffic ATPase type. Expression of the lacZ gene that was under control of the promoter for natAB indicated that expression of the operon was induced by ethanol and the protonophore carbonylcyanide p-chlorophenylhydrazone (CCCP), and, more modestly, by Na+, and K+, but not by choline or a high concentration of sucrose. Restoration of the natAB genes, cloned in a recombinant plasmid (pJY1), complemented the Na+-sensitive phe-notype of the mutant JC901 at elevated pH and significantly increased the resistance of the mutant to growth inhibition by ethanol and CCCP at pH 7; ethanol was not excluded, however, from the cells expressing natAB, so ethanol-resistance does not result from NatAB-dependent ethanol efflux. Transformation of the mutant with pJY1 did markedly enhance the capacity for Na+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号