首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cluster-Rasch models for microarray gene expression data   总被引:1,自引:0,他引:1  
Li H  Hong F 《Genome biology》2001,2(8):research0031.1-research003113

Background

We propose two different formulations of the Rasch statistical models to the problem of relating gene expression profiles to the phenotypes. One formulation allows us to investigate whether a cluster of genes with similar expression profiles is related to the observed phenotypes; this model can also be used for future prediction. The other formulation provides an alternative way of identifying genes that are over- or underexpressed from their expression levels in tissue or cell samples of a given tissue or cell type.

Results

We illustrate the methods on available datasets of a classification of acute leukemias and of 60 cancer cell lines. For tumor classification, the results are comparable to those previously obtained. For the cancer cell lines dataset, we found four clusters of genes that are related to drug response for many of the 90 drugs that we considered. In addition, for each type of cell line, we identified genes that are over- or underexpressed relative to other genes.

Conclusions

The cluster-Rasch model provides a probabilistic model for describing gene expression patterns across samples and can be used to relate gene expression profiles to phenotypes.  相似文献   

2.

Background

Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.

Results

DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.

Conclusion

We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.  相似文献   

3.
MOTIVATION: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. RESULTS: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings.  相似文献   

4.

Background  

Overfitting the data is a salient issue for classifier design in small-sample settings. This is why selecting a classifier from a constrained family of classifiers, ones that do not possess the potential to too finely partition the feature space, is typically preferable. But overfitting is not merely a consequence of the classifier family; it is highly dependent on the classification rule used to design a classifier from the sample data. Thus, it is possible to consider families that are rather complex but for which there are classification rules that perform well for small samples. Such classification rules can be advantageous because they facilitate satisfactory classification when the class-conditional distributions are not easily separated and the sample is not large. Here we consider neural networks, from the perspectives of classical design based solely on the sample data and from noise-injection-based design.  相似文献   

5.
6.
A comparison has been made between the estimates obtained from maximum likelihood estimation of gamma, inverse normal, and normal distribution models for stage-frequency data. Results have been compared for six of sets of test data, and from many sets of simulated data. It is concluded that (1) some estimates may differ substantially between the models, (2) estimates from the correct model have little bias, and estimated standard errors are generally close to theoretical values, (3) there are problems in determining degrees of freedom for chi-squared goodness of fit tests, so that it is best to compare test statistics with simulated distributions, and (4) goodness of fit tests may not discriminate well between the three models.  相似文献   

7.
Microarrays can provide genome-wide expression patterns for various cancers, especially for tumor sub-types that may exhibit substantially different patient prognosis. Using such gene expression data, several approaches have been proposed to classify tumor sub-types accurately. These classification methods are not robust, and often dependent on a particular training sample for modelling, which raises issues in utilizing these methods to administer proper treatment for a future patient. We propose to construct an optimal, robust prediction model for classifying cancer sub-types using gene expression data. Our model is constructed in a step-wise fashion implementing cross-validated quadratic discriminant analysis. At each step, all identified models are validated by an independent sample of patients to develop a robust model for future data. We apply the proposed methods to two microarray data sets of cancer: the acute leukemia data by Golub et al. and the colon cancer data by Alon et al. We have found that the dimensionality of our optimal prediction models is relatively small for these cases and that our prediction models with one or two gene factors outperforms or has competing performance, especially for independent samples, to other methods based on 50 or more predictive gene factors. The methodology is implemented and developed by the procedures in R and Splus. The source code can be obtained at http://hesweb1.med.virginia.edu/bioinformatics.  相似文献   

8.
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information.  相似文献   

9.
10.
MOTIVATION: Microarray expression profiling appears particularly promising for a deeper understanding of cancer biology and to identify molecular signatures supporting the histological classification schemes of neoplastic specimens. However, molecular diagnostics based on microarray data presents major challenges due to the overwhelming number of variables and the complex, multiclass nature of tumor samples. Thus, the development of marker selection methods, that allow the identification of those genes that are most likely to confer high classification accuracy of multiple tumor types, and of multiclass classification schemes is of paramount importance. RESULTS: A computational procedure for marker identification and for classification of multiclass gene expression data through the application of disjoint principal component models is described. The identified features represent a rational and dimensionally reduced base for understanding the basic biology of diseases, defining targets for therapeutic intervention, and developing diagnostic tools for the identification and classification of multiple pathological states. The method has been tested on different microarray data sets obtained from various human tumor samples. The results demonstrate that this procedure allows the identification of specific phenotype markers and can classify previously unseen instances in the presence of multiple classes.  相似文献   

11.
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/).  相似文献   

12.
13.
14.
MOTIVATION: Principal Component Analysis (PCA) is one of the most popular dimensionality reduction techniques for the analysis of high-dimensional datasets. However, in its standard form, it does not take into account any error measures associated with the data points beyond a standard spherical noise. This indiscriminate nature provides one of its main weaknesses when applied to biological data with inherently large variability, such as expression levels measured with microarrays. Methods now exist for extracting credibility intervals from the probe-level analysis of cDNA and oligonucleotide microarray experiments. These credibility intervals are gene and experiment specific, and can be propagated through an appropriate probabilistic downstream analysis. RESULTS: We propose a new model-based approach to PCA that takes into account the variances associated with each gene in each experiment. We develop an efficient EM-algorithm to estimate the parameters of our new model. The model provides significantly better results than standard PCA, while remaining computationally reasonable. We show how the model can be used to 'denoise' a microarray dataset leading to improved expression profiles and tighter clustering across profiles. The probabilistic nature of the model means that the correct number of principal components is automatically obtained.  相似文献   

15.
A large number of biclustering methods have been proposed to detect patterns in gene expression data. All these methods try to find some type of biclusters but no one can discover all the types of patterns in the data. Furthermore, researchers have to design new algorithms in order to find new types of biclusters/patterns that interest biologists. In this paper, we propose a novel approach for biclustering that, in general, can be used to discover all computable patterns in gene expression data. The method is based on the theory of Kolmogorov complexity. More precisely, we use Kolmogorov complexity to measure the randomness of submatrices as the merit of biclusters because randomness naturally consists in a lack of regularity, which is a common property of all types of patterns. On the basis of algorithmic probability measure, we develop a Markov Chain Monte Carlo algorithm to search for biclusters. Our method can also be easily extended to solve the problems of conventional clustering and checkerboard type biclustering. The preliminary experiments on simulated as well as real data show that our approach is very versatile and promising.  相似文献   

16.
HMMGEP: clustering gene expression data using hidden Markov models   总被引:3,自引:0,他引:3  
SUMMARY: The package HMMGEP performs cluster analysis on gene expression data using hidden Markov models. AVAILABILITY: HMMGEP, including the source code, documentation and sample data files, is available at http://www.bioinfo.tsinghua.edu.cn:8080/~rich/hmmgep_download/index.html.  相似文献   

17.
18.
Clustering is commonly used for analyzing gene expression data. Despite their successes, clustering methods suffer from a number of limitations. First, these methods reveal similarities that exist over all of the measurements, while obscuring relationships that exist over only a subset of the data. Second, clustering methods cannot readily incorporate additional types of information, such as clinical data or known attributes of genes. To circumvent these shortcomings, we propose the use of a single coherent probabilistic model, that encompasses much of the rich structure in the genomic expression data, while incorporating additional information such as experiment type, putative binding sites, or functional information. We show how this model can be learned from the data, allowing us to discover patterns in the data and dependencies between the gene expression patterns and additional attributes. The learned model reveals context-specific relationships, that exist only over a subset of the experiments in the dataset. We demonstrate the power of our approach on synthetic data and on two real-world gene expression data sets for yeast. For example, we demonstrate a novel functionality that falls naturally out of our framework: predicting the "cluster" of the array resulting from a gene mutation based only on the gene's expression pattern in the context of other mutations.  相似文献   

19.
With the growing surge of biological measurements, the problem of integrating and analyzing different types of genomic measurements has become an immediate challenge for elucidating events at the molecular level. In order to address the problem of integrating different data types, we present a framework that locates variation patterns in two biological inputs based on the generalized singular value decomposition (GSVD). In this work, we jointly examine gene expression and copy number data and iteratively project the data on different decomposition directions defined by the projection angle /spl theta/ in the GSVD. With the proper choice of /spl theta/, we locate similar and dissimilar patterns of variation between both data types. We discuss the properties of our algorithm using simulated data and conduct a case study with biologically verified results. Ultimately, we demonstrate the efficacy of our method on two genome-wide breast cancer studies to identify genes with large variation in expression and copy number across numerous cell line and tumor samples. Our method identifies genes that are statistically significant in both input measurements. The proposed method is useful for a wide variety of joint copy number and expression-based studies. Supplementary information is available online, including software implementations and experimental data.  相似文献   

20.

Background  

Affymetrix GeneChips™ are an important tool in many facets of biological research. Recently, notable design changes to the chips have been made. In this study, we use publicly available data from Affymetrix to gauge the performance of three human gene expression arrays: Human Genome U133 Plus 2.0 (U133), Human Exon 1.0 ST (HuEx) and Human Gene 1.0 ST (HuGene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号