首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent publications on the vegetation of Lake Kainji, Nigeria, give the impression that Echinochloa pyramidalis is the dominant macrophyte species of the lake. However, our experience of working on the lake since 1979 suggests a different floristic composition of the macrophyte vegetation of the lake. The most frequent macrophyte in Lake Kainji is Echinochloa stagnina. At all sites investigated, emergent macrophytes are more important than floating macrophytes. There is a possible successional shift from an Echinochloa pyramidalis sere to an Echinochloa stagnina stage. This argument does not, however, preclude the possibility of a mis-identification by early workers.  相似文献   

2.
We examined near-shore habitat use by larval shortnose and Lost River suckers in the lower Williamson River and Upper Klamath Lake of south-central Oregon. Emergent macrophytes Scirpus, Sparganium and Polygonum supported significantly more, larger, and better-fed larvae than submergent macrophytes, woody vegetation, or open water. Abundance, size, and gut fullness were similar for sucker larvae collected from different emergent macropytes. During the larval period, there was no evidence of density dependant effects or habitat shifts. Ranked catch per unit effort data indicated potential predators also were more likely to use emergent macrophytes, but ordination indicated larvae and potential predators were differentially distributed along a vegetation structure-water depth gradient with larvae in shallow vegetated areas. Between-habitat differences appeared to be due to larval sucker selection for, or better survival in, emergent macrophytes, rather than differential access or exclusion from other habitats. The importance of emergent macrophytes appears to be related to increased foraging success and reduced predation. Because larvae in emergent macrophytes have a size and gut fullness advantage, the amount of emergent habitat could affect early survival. However, interannual differences in recruitment to the adult population may or may not be dependent on larval dynamics. Our results suggest larval sucker access to emergent macrophytes may be necessary, but perhaps not sufficient, for promoting good year class formation.  相似文献   

3.
We investigated the influence of macrophyte composition on ciliate community structure in a large, shallow, eutrophic Lake Võrtsjärv. We hypothesized that macrophyte composition must have strong influence on the dispersal of ecologically different ciliate groups in a shallow lake and that more diverse macrophyte stands cause also a greater diversity in the ciliate community. In Võrtsjärv macrophyte distribution is spatially strongly polarized both in east–west and north–south directions in relation to abiotic factors. Phragmites australis and Myriophyllum spicatum were the most widespread species occurring in most parts of the lake. Correlation of environmental, macrophyte and planktonic ciliate variables confirmed the suggested spatial gradients. More diverse macrophyte stands supported a high species richness and abundance of epiplanktonic community but showed negative influence on the number and abundance of euplanktonic ciliate taxa. Opposite trends were found relative to the abundance of P. australis. Benthic ciliates showed a similar distribution pattern to euplanktonic taxa being most abundant in sites were the Shannon–Weaver index for macrophytes was low. Strong polarizing effect of the lake's vegetation on planktonic ciliate diversity was reflected in correlations of the number of ciliate taxa as well as the numbers of eu- and epiplanktonic taxa with geographic co-ordinates.  相似文献   

4.
We investigated how land use at multiple scales affects functional macrophytes groups and ecological status index in the boreal region. We employed a variance partitioning analysis to quantify the relative role of lake characteristics, multiple-scaled land use (catchment, buffer zones of 100, 300 and 500 m), and space in explaining the composition and richness of functional macrophyte groups (emergent and submerged macrophytes and hydrophytes) and ecological status of macrophytes in 110 Finnish lakes. Partial redundancy analysis (community composition) and partial linear regression (richness and status index) revealed that macrophyte community composition, richness, and status index were mostly explained by the pure effect of lake characteristics, which dominated over space for most macrophyte variables. Land use adjacent to shoreline had a higher effect on emergent macrophytes and status index compared to the land use of the whole catchment. Our findings suggest that emergent macrophytes can indicate changes in water quality and hydro-morphology originated from the close vicinity of the littoral zone. Ecological quality assessment based on emergent macrophytes only is probably not sufficient, but including emergent species in the assessments is recommended, especially in the species-poor boreal region.  相似文献   

5.
The species composition, distribution and diversity of macrophytes in Lake Ziway were determined at the end of dry and wet seasons along nine littoral sites during 2010 using a belt transect method. Some physicochemical parameters were also measured. Fourteen macrophyte species were identified with low species diversity for the lake (H' value of 1.805). The macrophyte species composition of the lake has undergone many changes during the last few decades. Arundo donax, which was never reported earlier, attained the highest relative density (30.7%) and frequency (30.5%) in this study, followed by Echinochloa colona, Potamogeton schweinfurthii, Cyperus articulatus, Typha latifolia and Cyperus papyrus. The average densities of A. donax, C. articulatus, E. colona and Pistia stratiotes were positively correlated with nutrients, whereas the density of the other species had negative correlation with physicochemical variables (CCA). Generally, the present macrophyte composition and abundance indicates healthy ecological condition of the lake. But if nutrient levels continue to increase and water levels continue to decline, we expect further changes in macrophyte composition and especially a shift towards invasive floating species.  相似文献   

6.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

7.
Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species. By the 1960s, lake turbidity increased during a period of anthropogenic eutrophication, resulting in a 38% decline in species richness and a 95% reduction in abundance of native gastropods grazing on benthic algae. Following the invasion of Dreissena spp. in 1991 and subsequent increases in water clarity, native gastropod species richness expanded by 37% and abundance increased 20-fold by 2012. In contrast, filter-feeding unionids were unaffected by increased turbidity during the period of eutrophication but were extirpated by dreissenids. Through contrasting effects on turbidity, eutrophication and Dreissena spp. have likely driven the observed changes in native grazing gastropods by affecting the abundance of light-limited benthic algae. Given the high species richness and ecological importance of benthic grazers, monitoring and managing turbidity is important in preserving molluscan diversity.  相似文献   

8.
1. Submerged macrophyte and phytoplankton components of eutrophic, shallow lakes have frequently undergone dynamic changes in composition and abundance with important consequences for lake functioning and stability. However, because of a paucity of long‐term survey data, we know little regarding the nature, direction and sequencing of such changes over decadal–centennial or longer timescales. 2. To circumvent this problem, we analysed multiple (n = 5) chronologically correlated sediment cores for plant macro‐remains and a single core for pollen and diatoms from one small, shallow, English lake (Felbrigg Hall Lake, Norfolk, U.K.), documenting 250 years of change to macrophyte and algal communities. 3. All five cores showed broadly similar stratigraphic changes in macrophyte remains with three distinct phases of macrophyte development: Myriophyllum–Chara–Potamogeton (c. pre‐1900), to Ceratophyllum–Chara–Potamogeton (c. 1900–1960) and finally to Zannichellia–Potamogeton (c. post‐1960). Macrophyte species richness declined from at least 10 species pre‐1900 to just four species at the present day. Additionally, in the final Zannichellia–Potamogeton phase, a directional shift between epi‐benthic and phytoplankton‐based primary production was indicated by the diatom data. 4. Based on macrophyte–seasonality relationships established for the region, concomitant with the final shift to Zannichellia–Potamogeton, we infer a reduction in the seasonal duration of plant dominance (plant‐covered period). Furthermore, we hypothesise that this change in species composition resulted in a situation whereby macrophyte populations were seasonally ‘sandwiched’ between two phytoplankton peaks in spring and late summer as observed in the contemporary lake. 5. We suggest that eutrophication‐induced reductions in macrophyte species richness, especially if the number of plant‐seasonal strategies is reduced, may constrict the plant growing season. In turn, this may render a shallow lake increasingly vulnerable to seasonal invasions of phytoplankton resulting in further species losses in the plant community. Thus, as part of a slow (over perhaps 10–100s of years) and self‐perpetuating process, macrophytes may be gradually pushed out by phytoplankton without the need for a perturbation as required in the alternative stable states model of plant loss.  相似文献   

9.
10.
Paul Humphries 《Hydrobiologia》1996,321(3):219-233
Aquatic macrophytes are a common habitat for macroinvertebrates and may occupy depth zones in the littoral region of lowland rivers. Studies have indicated that different species of macrophyte typically support different assemblages, abundances and numbers of species of macroinvertebrates. This has often been attributed to differences in the dissectedness of stems and leaves of the macrophytes, resulting in differences in the surface area and/or the number of microhabitats available to invertebrates. I set out to measure the abundance and taxonomic richness and to describe the macroinvertebrate assemblages associated with three species of aquatic macrophyte in a pool in the Macquarie River, Tasmania and to examine responses of these variables to changes in water levels over summer. The macrophyte species sampled wereMyriophyllum simulans/variifolium, Triglochin procera} and Eleocharis sphacelata, each one differing in the dissectedness of its stems and leaves and its location in the littoral zone. Whereas the greatest abundance of macroinvertebrates was found associated in all months (i.e. at all water levels) with the structurally complex and shallowest macrophyte species, Myriophyllum, the number of taxa associated with this species was in several cases lower than for the structurally simpler and deeper water Triglochin and Eleocharis. While water depth and total plant biomass of samples were often correlated with invertebrate abundance and richness, these relationships were different for each macrophyte species. Of the nine most common invertebrate taxa collected from all samples, the abundances of more than half showed consistent differences among macrophyte species across months, two showed differences among macrophytes, but with an interaction with month and two showed no differences among macrophytes. There were major differences in the invertebrate assemblages associated with each macrophyte species in any one month, however, there was also a large turnover of taxa associated with the species of macrophytes from one month to the next. Changes in water level and concomitant changes in environmental variables are suggested as factors influencing the invertebrate fauna in the littoral zone of the pool of the Macquarie River. It is thus important for river managers to be aware that species of macroinvertebrates are not evenly distributed across species of macrophyte and that water levels and their influence on macrophytes as invertebrate habitat may play an integral part in determining the abundance, richness and assemblage of invertebrates in rivers.  相似文献   

11.
Environmental controls on cladoceran community structure in lake ecosystems are complex and may involve many environmental parameters including trophic state and fish populations. In Lake Erhai, a plateau lake located in southwest China, it was hypothesized that a combination of lake eutrophication and planktivorous fish introduction would increase the abundance of cladoceran, while also decreasing cladoceran size. To test this hypothesis, we examined temporal changes in cladoceran microfossils in the sediments of Lake Erhai over the past century. The influence of changing macrophyte coverage within the littoral region of the lake was also considered. Results demonstrated that cladoceran abundance (measured as flux of cladoceran fossils in the sediments) increased markedly accompanying eutrophication of the lake. In addition, there was a shift in the dominant cladoceran species from those species that prefer oligotrophic conditions to those that prefer mesotrophic and eutrophic conditions. A reduction in the ephippium length of Daphnia spp. was observed and attributed to the introduction of the planktivorous fish Neosalanx taihuensis. Our findings indicated that eutrophication and fish introduction were the main controls affecting cladoceran community structure during the recent decades, and predation by planktivorous fish had an important impact on Daphnia body size.  相似文献   

12.
Loch Flemington is a shallow lake of international conservation and scientific importance. In recent decades, its status has declined as a result of eutrophication and the establishment of non-native invasive aquatic macrophytes. As previous research had identified the lake bed sediments as an important source of phosphorus (P), the P-capping material Phoslock® was applied to improve water quality. This article documents the responses of the aquatic macrophyte community by comparing data collected between 1988 and 2011. Summer water-column total P concentrations decreased significantly and water clarity increased following treatment. Aquatic plant colonisation depth increased and plant coverage of the lake bed extended. However, the submerged vegetation remained dominated by the non-native Elodea canadensis Michx. Aquatic macrophyte community metrics indicated no significant change in trophic status. Species richness and the number of ‘natural’ eutrophic characteristic species remained broadly similar with no records of rare species of conservation interest. Loch Flemington is still classified as being in ‘unfavourable no change’ condition based on its aquatic macrophytes despite the water quality improvements. The implications of these results are discussed in relation to the future management of Loch Flemington and in the wider context of trying to improve our understanding of lake restoration processes.  相似文献   

13.
Human development of pond and lake shorelines may significantly impact native lacustrine biota including a variety of aquatic macroinvertebrate groups. In an effort to better understand the habitat associations and sensitivities of lacustrine damselflies (Odonata: Zygoptera), we sampled adults in littoral macrophyte habitat during two flight periods at 35 randomly selected pond and lake sites in southern Maine during 2000 and 2001. Data were also collected to help characterize water body, shoreline disturbance, and aquatic vegetation at each study site. Nonmetric multidimensional scaling was used for ordination of damselfly assemblages, and coordinates from the most stable solution were related to site variables using forward stepwise multiple regression. Our results suggest that the diversity and composition of damselfly assemblages is related to the abundance and richness of littoral zone macrophytes, extent of riparian disturbance, benthic substrate granularity, and lake productivity; all variables subject to anthropogenic degradation on excessively developed waterbodies. Additionally, we developed a Habitat Tolerance Index useful for distinguishing between relative habitat specialists and generalists from among a diverse assemblage of 19 lacustrine species. Finally, species-specific damselfly associations with multiple genera of floating and emergent macrophytes were assessed using both nonparametric correlation and multiplicative regression yielding significant relationships for 17 species, including two damselflies of global conservation concern (Enallagma laterale and E. pictum). We conclude that the protection of littoral and shoreline habitat integrity, with special emphasis on emergent and floating macrophytes, is critical to the conservation of lacustrine biodiversity.  相似文献   

14.
1. The objective of the present study was to examine how the physical stream environment in regulated and unregulated lowland streams affects the diversity and distribution of macrophyte communities. We analysed the abundance, distribution and composition of macrophytes, together with physical parameters, in seven regulated and seven unregulated unshaded Danish stream reaches. 2. Total macrophyte coverage was similar in the regulated and unregulated streams, but species richness and Shannon diversity were higher in the unregulated streams. Overall, we found fifty-two different species in the regulated stream reaches and sixty-two in the unregulated stream reaches. The spatial distribution of macrophytes on the stream bottom was more heterogeneous in the unregulated streams. 3. We found positive correlations between the coverage and diversity of macrophytes and the coverage of coarse-textured substratum types on the stream bottom, as well as between macrophyte coverage and diversity and substratum heterogeneity. We also found that the macrophytes were more heterogeneously distributed where substratum heterogeneity was greater. 4. The species growing both submerged and emergent were more abundant in the regulated streams, whereas species growing only submerged were more abundant in the unregulated streams. Species growing submerged, species growing both submerged and emergent, and species only growing emergent segregated differently in a canonical correspondence analysis ordination. The submerged species were primarily associated with coarser-textured substrata, whereas species growing both submerged and emergent, and species growing only emergent were associated with finer-textured substrata. 5. The most abundant species in the regulated streams, Sparganium emersum, accounting for almost one-third of the total macrophyte coverage, was primarily associated with clay and sandy bottom substrata, whereas the most abundant species in the unregulated streams, Batrachium peltatum, was primarily associated with gravel and stony substrata.  相似文献   

15.
The sediment of Lake Balaton (Hungary) provides important information about the lake’s history, particularly with regard to eutrophication. In this study, we used fossil pigment analysis and subfossil Cladocera remains preserved in a dated sediment core to identify trophic stages from ~250 bc to present. Dates of the most recent eutrophic events are in good agreement with previously published data. In general, the abundance and diversity of the Cladocera community increased with eutrophication and decreased with oligotrophication. The sediments of Lake Balaton were characterised by Chydoridae remains, of which Alona species were the most abundant. Of these, Alona quadrangularis and Alona affinis accounted for 40 and 20% of the total Cladocera remains, respectively. The trophic state of Lake Balaton varied between mesotrophic and eutrophic regimes. Seven different trophic periods were identified in Lake Balaton on the basis of Sedimentary Pigment Degradation Unit (SPDU) content of the sediment. Eutrophic states were (1) from ~250 to ~30 bc, (3) between ~300 and ~590 ad, (5) between 1834 and 1944 and (7) from the 1960s until present. Mesotrophic states were (2) ~30 bc to ~300 ad, (4) 590–1834, (6) 1944–1960s. Discriminant analysis of the cladoceran data confirmed these historic events, except for the short mesotrophic episode between 1944 and 1960. The first stage of eutrophication of Lake Balaton (~250 to ~30 bc) was characterised by extensive macrophyte vegetation, as indicated by the increasing abundance of vegetation-associated Cladocera species (Eurycercus lamellatus, Sida crystallina, Pleuroxus sp.). Intensification of eutrophication was identified since the 1980s, reflected by a high abundance of Bosmina species. The most significant planktivorous fish of Lake Balaton was the Sabre carp (Pelecus cultratus), and when its number decreased, the abundance of Bosmina species increased. This study shows that Cladocera are responsive to trophic state changes, underlining their importance as a tool for the assessment of lake eutrophication.  相似文献   

16.
西太湖水生植物时空变化   总被引:37,自引:3,他引:37  
水生植物在浅水湖泊生态系统中具有十分重要的作用。根据中国科学院太湖湖泊生态系统研究站1989年以来的常规监测资料,将西太湖(除东太湖以外的湖区)划分为9个区,采用点截法(point intercept method),于2002~2005年对各区水生植物的种类、生物量和空间分布情况进行了6次调查。结果表明:西太湖现有水生植物16种,分属于11科12属;水生植物总面积约10220hm^2,其中沉水植物分布面积约占64.58%;挺水植物约占0.29%;漂浮植物约占38.16%。各个种之间生物量差异显著,马来眼子菜、荇菜、芦苇的生物量在所有水生植物中居前3位。多样性分析表明,水生植物种类4a来未发生明显变化,但种类和生物量季节性差异较大。水生植物呈环状分布在距湖岸5km以内的水域和部分岛屿周围,东岸和南岸为水生植物的主要集中分布区域,分布区连续性好,且水草种类齐全。挺水植物种类单一,仅有芦苇(Phragmites communis)一种,分布区域多限于水深小于1.6m的湖岸;沉水植物共有8种,为水生植物的主要组成部分,马来眼子菜(Potamogeton malaianus)的分布频度最高,在西山岛周围水域逐年扩张,成为该区域的先锋种;漂浮植物3种,主要以荇菜(Nymphoides peltata)为主,在七都水域有逐渐扩张的趋势。马来眼子菜、芦苇、荇菜表现出对水环境较强的适应能力,目前为西太湖的3个优势种。20世纪50年代以来,西太湖水生植物种类减少了50种,其中水质下降是导致水生植物种类不断减少甚至消失的一个重要原因。围网养殖和不合理的捕捞方式也对局部水域的植物造成极大的破坏。水生植物生存环境日益严峻,种群单一化趋势日益明显。  相似文献   

17.
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.  相似文献   

18.
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.  相似文献   

19.
The diversity and community structure of macrophyte vegetation was studied in 50 boreal lakes forming several upper reaches of lake chains around Lammi, southern Finland. Water chemical parameters and morphometry of the basins were included in a multivariate analysis. Floating-leaved vegetation was the dominant growth form, followed by emergent plants. In downstream lakes, the dominance of floating-leaved macrophytes declined, and emergent species increased in abundance. Species richness was highest in larger lakes, with a wider range of littoral habitats than smaller lakes. Electrical conductivity (range 18–151 mS cm−1, 25 °C) of the water correlated well with patterns in diversity among lakes, but this was not the case for nutrient concentrations. As a whole, morphometrical characteristics of lake basins showed better correlations with vegetation structure than any of the measured chemical parameters. The macrophyte vegetation of neighbouring lake chains differed considerably, depending on the surrounding landscape properties, water quality of the lakes and immigration history of plant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号